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Resumo 

 

Este projeto analisa o escoamento unidimensional de fluidos compressíveis 

tanto para situações subsônicas quanto para supersônicas. O projeto aborda 

a modelagem de um escoamento sob a influência de diferentes fatores, como 

a variação de área, a presença de atrito e troca de calor. Após a obtenção de 

um modelo matemático para o escoamento, o projeto realiza simulações com 

o uso de softwares de simulações numéricas para diferentes casos e valida 

este modelo realizando comparações com resultados consagrados, por 

exemplo, os resultados obtidos por Fanno e Rayleigh. 
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Abstract 

This project analyses the quasi-one-dimensional flow both for subsonic as 

supersonic situations. The project approaches the modeling of a flow under 

the influence of multiple factors, such as the variation of the cross section, the 

presence of friction and exchange of heat. After obtaining a mathematical 

model for the flow, the project simulates, with the support a numerical 

computing software, different situations and validates the model making a 

comparison between the results obtained, and renowned results as the ones 

obtained by Fanno and Rayleigh.  
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Lista de abreviaturas e siglas 

 

A Área 

a Velocidade do som 

D Diâmetro 

𝑐𝑝 Calor específico a pressão constante 

𝑐𝑣 Calor específico a volume constante 

𝑓 Fator de atrito 

𝐹𝑑 Força de arrasto 

ℎ Entalpia 

𝐼 Função impulso 

𝑚̇ Fluxo de massa 

M Número de Mach 

P Pressão 

𝑞 Taxa de transferência de calor por unidade de massa 

𝑄 Taxa de transferência de calor 

R Constante do gás considerado 

𝑅𝑒 Número de Reynolds 

𝑠 Entropia 

𝑇 Temperatura absoluta 

𝑡 Time 

V Velocidade  

V’ Velocidade do fluido injetado 

𝑤 Taxa de trabalho realizado por unidade de passa 

𝑊 Taxa de trabalho realizado 

𝑘 Razão entre calores específicos 

µ Viscosidade 



 
 
 

 

 
 
 

 

ρ Densidade 

( )0 Estado de estagnação 

( )∗ Estado aonde M=1 

( )𝑔 Gás injetado 

( )𝑒𝑣 Subscrito referente à evaporação de liquido 

Ɽ Constante universal dos gases perfeitos 

W Massa molecular 

𝐷ℎ Diâmetro hidráulico 
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1. INTRODUÇÃO 

 

 O ESCOAMENTO GENERALIZADO DE FLUIDOS COMPRESSÍVEIS 

 

Em uma análise de um escoamento de gases a variação da massa 

contida em determinado volume é significativa e se faz fundamental para uma 

análise com resultados robustos levar em conta a compressibilidade deste 

fluido. Ao longo de um escoamento um gradiente de pressão é associado, por 

exemplo, ao perfil de velocidades deste fluxo. Este gradiente de pressão 

incorre em diferenças na densidade do fluido, e a importância destas 

variações e gradientes cresce atrelada à compressibilidade do fluido, 

significativa em estudos que envolvam gases. Estas variações, por sua vez, 

terão consequências diretas na energia cinética do fluido e, portanto, em sua 

temperatura. Com o aumento das velocidades do escoamento, principalmente 

para velocidades próximas ao número de Mach 1, estes gradientes impõem 

variações significativas às propriedades do escoamento e o comportamento 

do fluido se distingue do observado no cotidiano e, portanto, da intuição 

humana. Essa diferença apresenta valores expressivos justamente devido à 

compressibilidade do fluido, tornando relevante o estudo da dinâmica dos 

fluidos compressíveis.  

Em cursos de graduação, a análise de escoamentos compressíveis é 

realizada, em geral, levando-se em consideração casos particulares de 

escoamentos e os resultados são apresentados desta mesma forma, com os 

possíveis efeitos que possam atuar sobre o fluído de maneira isolada. Zucrow 

(1976) chama de “escoamentos simples” os que são apresentados de forma 

separada. Para Zucrow (1976) analisam : 

 Escoamentos isentrópicos com variação de área; 

 Escoamentos sob efeito de atrito simples;  

 Escoamentos com adição de calor. 
 
Esta análise, embora didática, é falha em retratar o que de fato ocorre 

em situações práticas, aonde um ou mais destes efeitos têm influência 

simultânea no estado presente do fluido. O estudo dos estados, quando há 

múltiplos fatores envolvidos, não apresenta resultados diretos e requer uma 
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análise mais generalizada do problema, mesmo para gases perfeitos. O fato 

de múltiplos fatores atuarem simultaneamente no estado do fluido impõe que 

os resultados sejam obtidos através de rotinas numéricas, e por este motivo 

o Software Matlab® é utilizado neste trabalho para que obter valores 

numéricos para diferentes situações de entrada. 

Conforme mencionado anteriormente, situações aonde a análise 

através da abordagem de escoamento generalizado se mostra mais relevante 

são situações em que a velocidade do fluido se apresenta próxima ao número 

de Mach igual a 1. Situações de engenharia que apresentam tal cenário são, 

conforme destacado por Oosthuisen(1997): 

 Design de aeronaves de alta velocidade; 

 Aplicações aeroespaciais; 

 Turbinas a gás: nas lâminas da turbina e nos bocais onde o fluxo 

compressível deve ser considerado; 

 Turbinas a vapor: novamente, nas lâminas da turbina o fluxo deve ser 

analisado como compressível; 

 Válvulas de admissão e escape devem ser tratados como 

compressível; 

 Linhas de transmissão de gás natural: a compressibilidade do fluido é 

importante; 

 Câmaras de combustão devido as altas temperaturas e velocidades 

envolvidas. 

 

 

Figura 1-1 Escoamento compressível/quase-incompressivel ao redor de um aerofólio 
NACA0012 com ângulo de ataque de 10 graus 
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  OBJETIVOS DO PROJETO 

 

Com este projeto almeja-se obter um programa que realize simulações 

de escoamentos sob influência simultânea de diferentes fatores. Espera-se 

que o programa seja versátil para diferentes entradas e situações, englobando 

escoamentos supersônicos e subsônicos. O modelo será validado através da 

verificação se os resultados representam com precisão os resultados obtidos 

por autores para os mencionados “escoamentos simples”. Espera-se 

encontrar ensaios com altos valores do número de Mach, de forma a validar 

o modelo para situações reais. 
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2. REVISÃO DA LITERATURA 

 

  HIPÓTESES ADOTADAS 

 

Este estudo irá abordar o escoamento de gases, que são mais 

relevantes no que tange a análise de escoamentos compressíveis. Como 

hipóteses elementares para se obter o modelo será considerado que: 

 O fluido será tratado como um meio contínuo. Isto é relevante para que 

o movimento individual das moléculas não impacte diretamente o 

restante do fluido; 

 Não ocorrem reações químicas. Isso é importante para a composição 

do gás permanecer constante ao longo do escoamento e não ocorrer 

liberação de energia interna. Este caso é relevante, por exemplo, para 

a análise da propulsão de um foguete, aonde ocorrem reações de 

combustão que são fundamentais para a análise;  

 O gás será tratado como gás perfeito e, portanto, obedece a equação 

de estado de gases perfeitos: 

 𝑝

𝛒
= 𝑅𝑇 =

Ɽ

W
T    (1) 

Além disso, o calor específico a pressão constante e a volume 

constante permanecem constantes e, portanto, a razão entre eles, 𝑘, também 

é constante. 

 𝑘 =
𝑐𝑝

𝑐𝑣
   (2) 

 Efeitos gravitacionais sobre o fluido podem ser desprezados. Para 

gases esta hipótese retrata bem casos reais, uma vez que a ordem de 

grandeza da massa de gases é, normalmente, baixa e a energia 

cinética do fluido é significativamente maior do que a energia potencial;  

 Efeitos magnéticos e elétricos são desprezados. Estes efeitos são 

relevantes quando o fluido conduz eletricidade e está exposto a um 

campo elétrico, o que não é o caso; 

 Os efeitos da viscosidade são desprezados. 
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  CONCEITOS IMPORTANTES 

 

Alguns conceitos são fundamentais para a obtenção das equações de 

estado do sistema e serão usados de forma extensiva na descrição de um 

escoamento compressível generalizado. É importante que se entenda as 

considerações acerca destes conceitos. 

 

 Velocidade do som 

 

A velocidade na qual uma perturbação no meio se propaga é chamada 

de velocidade da onda. Esta velocidade depende do tipo do meio e também 

do estado termodinâmico deste. O tipo do meio é relevante uma vez que a 

velocidade do som no meio é inversamente proporcional à compressibilidade 

do meio. 

 
𝑎2 = (

𝜕𝑝

𝜕𝛒
)𝑠 = 𝑘𝑅𝑇  

(3) 

Na forma diferencial, a equação 3 fica na forma: 

 𝑑𝑎

𝑎
=

1

2
(
𝑑𝑘

𝑘
+

𝑑𝑇

𝑇
−

𝑑𝑊

𝑊
) 

(4) 

 

 O número de Mach 

 

O número de Mach é definido pela razão entre a velocidade de 

escoamento do fluido e a velocidade sônica do mesmo. Desta definição e da 

equação (3), tem-se: 

 
𝑀2 =

𝑉2

𝑎2
= √𝑘𝑅𝑇 

(5) 

Esta equação, escrita na forma diferencial fica: 

 𝑑𝑀2

𝑀2
=

𝑑𝑉2

𝑉
+

𝑑𝑊

𝑊
−

𝑑𝑘

𝑘
−

𝑑𝑇

𝑇
 

(6) 
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  ESTADO DE ESTAGNAÇÃO 

 

Conforme descreve Zucker (2002) o estado de estagnação descreve 

um estado hipotético em que seriam obtidas as propriedades do fluido a partir 

da referência do fluido, ao estado estático do fluido. Ou seja, o estado 

termodinâmico que seria obtido se o escoamento fosse levado a potencial e 

velocidade nulos sem adição de calor e sem perdas. Ou seja, o processo de 

estagnação é isentrópico. 

 

Para gases, o estado de estagnação, possui entalpia de: 

 
ℎ0 = ℎ +

𝑉2

2
    

(7) 

 

Figura 2-1 Comparação entre estados de estagnação de dois pontos aleatórios do 
escoamento, Zucker(2002)  

É importante salientar que o estado de referência é um estado 

hipotético e pode não existir ao longo do escoamento. As equações para se 

obter a pressão, a densidade, a temperatura e o número de Mach a partir de 

um determinado estado, são: 

 𝑝0

𝑝
= [1 +

𝑘 − 1

2
𝑀2]

𝑘
𝑘−1   

(8) 
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 ρ0

ρ
= [1 +

𝑘 − 1

2
𝑀2]

1
𝑘−1   

(9) 

 𝑇0

𝑇
= [1 +

𝑘 − 1

2
𝑀2]    

(10) 

 

 O estado * de referência, o estado crítico 

 

Analogamente ao estado de estagnação, as condições do estado 

crítico seriam obtidas caso o escoamento fosse levado isentrópicamente até 

que o número de Mach atingisse 1.  

As equações para se obter a pressão, a densidade, a temperatura a 

partir do número de Mach são: 

 𝑇∗

𝑇
= [

2

𝑘 + 1
+

𝑘 − 1

𝑘 + 1
𝑀2]     

(11) 

 𝑝∗

𝑝
= [

2

𝑘 + 1
+

𝑘 − 1

𝑘 + 1
𝑀2]

𝑘
𝑘−1    

(12) 

 ρ∗

ρ
= [

2

𝑘 + 1
+

𝑘 − 1

𝑘 + 1
𝑀2]

1
𝑘−1 

(13) 

 

  EQUAÇÕES GOVERNANTES DO ESCOAMENTO 

 

O sistema será analisado a partir de relações termodinâmicas 

fundamentais que serão utilizadas para obter um sistema de equações 

diferenciais aplicáveis a sistemas que seguem as hipóteses simplificadoras 

mencionadas nos tópicos anteriores. 

 

 Volume de controle analisado 

 

O volume de controle utilizado na análise do escoamento generalizado 

deve representar as possíveis alterações de propriedades do sistema entre 

um estado e o estado diferencial subsequente. O volume de controle segue o 

volume diferencial descrito por Shapiro (1956) e que representa: 

i. Variação de área; 
ii. Atrito com a parede do conduto; 
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iii. Arrasto de corpos internos; 
iv. Mudança de fase de componentes do sistema; 
v. Mistura de gases injetados no sistema; 
vi. Mudanças no peso molecular e no calor específico do gás decorrente 

de possíveis reações químicas, evaporação, injeção de gases; 
 

 

 

Figura 2-2 Volume de controle para escoamento generalizado 

Com este volume de controle é possível obter para cada estado os 

incrementos: 𝐴 + 𝑑𝐴, 𝑃 + 𝑑𝑃, 𝜌 + 𝑑𝜌, 𝑇 + 𝑑𝑇, 𝑀 + 𝑑𝑀, ℎ + 𝑑ℎ, 𝑠 + 𝑑𝑠. Este 

volume de controle retrata os principais fatores externos que podem atuar num 

volume de controle de um escoamento unidimensional. Entretanto, será 

desconsiderada desta análise mudanças de fase dos componentes do 

sistema e mudanças no peso molecular e no calor específico do gás 

decorrente de possíveis reações químicas, evaporação, injeção de gases. 
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 Equação de estado para gases perfeitos 

 

Seguindo a hipótese adotada de que o sistema é composto por gases 

perfeitos, a equação que relaciona a pressão, a densidade e a temperatura é: 

 𝑃 =   ρ ∗ R ∗ T   (14)  

 

 

Na forma diferencial, a equação 14 fica: 

 𝑑𝑝

𝑝
=

𝑑ρ

ρ
+

𝑑𝑇

𝑇
−

𝑑𝑊

𝑊
 

(15)  

    

 Equação da Continuidade 

 

O fluxo de massa é uma variável de interesse do sistema. Esta análise 

considera somente a participação de gases no sistema. Qualquer escoamento 

de líquido no sistema será desconsiderado na análise do volume de controle. 

O fluxo de massa pode ser expresso pela equação 15: 

 𝑚̇ = 𝜌𝐴𝑉 (16) 

Que na forma diferencial fica: 

 𝑑𝑚̇

𝑚̇
=

𝑑𝜌

𝜌
+

𝑑𝐴

𝐴
+

𝑑𝑉

𝑉
 

(17) 

Lembrando que o fluxo de massa é referente ao fluxo de gás. No caso 

de partículas que evaporam ao longo do escoamento, esta adição de massa 

ao escoamento pode ser representada por 𝑑𝑚̇𝑒𝑣, e assim, a variação da 

massa em uma seção do escoamento pode ser representada por: 

 𝑑𝑚̇ = 𝑑𝑚̇𝑔 + 𝑑𝑚̇𝑒𝑣 (18) 

Oosthuizen (1994) sugere adotar 𝑀2 ao longo da dedução das 

equações do escoamento generalizado por retirar a raiz do quociente da 

fórmula com que se obtém o número de Mach. Da definição do número de 

Mach, se obtém: 

 
𝑀2 =

𝑉2

𝑎2
=

𝑉2

𝑘𝑅𝑇
 

(19) 

De maneira análoga, para o estado diferencial subsequente ao instante 

inicial: 
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(𝑀 + 𝑑𝑀)2 =

(𝑉 + 𝑑𝑉)2

(𝑎 + 𝑑𝑎)2
=

(𝑉 + 𝑑𝑉)2

𝑘𝑅(𝑇 + 𝑑𝑇)
 

(20) 

Rearranjando as equações 19 e 20, multiplicando os termos, e 

desprezando termos de segunda ordem, a seguinte equação é obtida: 

 

 

𝑑𝑀2

𝑀2
=

2𝑑𝑉

𝑉
−

𝑑𝑇

𝑇
 

(21) 

 

 Conservação da energia 

 

Com as hipóteses adotadas, a variação da energia decorre de mudanças 

na energia potencial do sistema. A evaporação de componentes do sistema 

será desconsiderada a partir deste ponto da análise. Para o volume de 

controle da figura 2-3 a variação da energia entre os estados, 𝑥 e 𝑥 + 𝑑𝑥, pode 

ser escrito com a primeira lei da termodinâmica, na forma da equação (22), 

aonde o subscrito 𝑖 remete à injeção de gás: 

 
𝑚̇(𝑑𝑞 − 𝑑𝑤𝑠) = [𝑚̇ (ℎ +

𝑉2

2
) − 𝑑𝑚̇ (ℎ𝑖 +

𝑉𝑖
2

2
)

+ (𝑚̇ + 𝑑𝑚̇) [ℎ + 𝑑ℎ +
𝑉 + 𝑑𝑉2

2
] 

(22) 

 

Dividindo a equação por 𝑚̇ rearranjando as equações e denotando: 

 
𝑑𝑞 − 𝑑𝑤𝑠 = [(ℎ + 𝑑ℎ) +

(𝑉 + 𝑑𝑉)2

2
− (ℎ +

𝑉2

2
)]

−
𝑑𝑚̇

𝑚̇
 (ℎ − ℎ𝑖 +

(𝑉 − 𝑉𝑖)
2

2
) 

 

(23) 

Se 𝑇0 e 𝑇0 + 𝑑𝑇0 são a temperatura de estagnação na entrada do 

volume de controle e na saída dele, respectivamente, então, pela definição de 

temperatura de estagnação: 

 
ℎ0 = ℎ −

𝑉2

2
 

(24) 

E analogamente: 

 
ℎ0 + 𝑑ℎ0 = ℎ + 𝑑ℎ −

(𝑉 + 𝑑𝑉)2

2
 

(25) 
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Para um gás perfeito, 𝑑ℎ0 = 𝑐𝑝𝑑𝑇0, e, portanto, se obtém uma 

expressão mais simplificada para a energia do problema com: 

 𝑑𝑇0

𝑇0
= 

1

𝑐𝑝𝑇0
  {𝑑𝑞 − 𝑑𝑤𝑠 −

𝑑𝑚̇

𝑚̇
[(ℎ − ℎ𝑖) +

(𝑉 − 𝑉𝑖)
2

2
]} 

(26) 

Lembrando que a temperatura de estagnação provém da relação entre 

a temperatura e o número de Mach do estado de escoamento através da 

relação: 

 
𝑑𝑇0

𝑇0
=

𝑑𝑇

𝑇
+

(𝑘 − 1)
2 𝑀2

1 +
(𝑘 − 1)

2 𝑀2

𝑑𝑀2

𝑀2
 

 

(27) 

   

 Conservação da quantidade de movimento 

 

A força líquida atuando sobre o fluido e, consequentemente, sobre o 

volume de controle é igual ao aumento da quantidade de movimento do 

escoamento que passa através do volume de controle. Oosthuizen (1994) 

denota a variação da quantidade de movimento do sistema 

esquematicamente por: 

Força líquida 

da pressão em 

1 

 

 

- 

Força 

líquida da 

pressão em 

2 

 

 

+ 

Força 

líquida da 

pressão na 

superfície 

inclinada 

 

 

- 

Componente 

da força de 

cisalhamento 

líquido na 

direção do 

escoamento 

 

 

- 

Força de 

Arrasto Líquido 

 

= 

Fluxo de 

momento 

em 2 

 

- 

Fluxo de 

momento 

em 1 

 

- 

Fluxo de 

momento 

injetado 

 

 

A equação para o volume de controle, considerando que o fluido 

injetado tem a mesma pressão do escoamento, temos: 

 𝑃𝐴 − (𝑃 + 𝑑𝑃)(𝐴 + 𝑑𝐴) + (𝑃)𝑑𝐴 − 𝑑𝐹𝐷 − 𝜏𝑤𝐴𝑤 = 

(𝑚̇ + 𝑑𝑚̇)(𝑉 + 𝑑𝑉) − 𝑚̇𝑉 − 𝑑𝑚̇𝑉𝑖𝑐𝑜𝑠𝛼𝑖 

(28) 
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Será tomado como hipótese que o ângulo decorrente da variação da 

área é pequeno, fazendo que o último termo da equação (28) seja anulado. 

𝐹𝑑 representa todas as forças de arrasto na direção do escoamento 

unidimensional. O termo 𝑑𝑚̇𝑉𝑖𝑐𝑜𝑠𝛼𝑖 denota a injeção de massa no 

sistema, 𝑑𝑚̇, com velocidade 𝑉𝑖 e ângulo 𝛼𝑖 em relação à direção do 

escoamento. 

Com o fator de atrito de Fanno para calcular a tensão de cisalhamento, 

representada por 𝜏𝑤, do escoamento com a parede decorrente do atrito, sendo 

que 𝑓 = 𝑓(𝑅𝑒𝐷 ,
𝑟

𝐷
). : 

 𝑓 =
𝜏𝑤

𝜌𝑉2
 (29) 

Dividindo a equação (25) por 𝑚̇, utilizando a definição de 𝑟𝑖 dada pela 

equação (27) e relembrando a relação do número de Mach dada pela equação 

(28), chega-se na equação simplificada (29) obtida por Oosthuizen (1994). 

 
𝑟𝑖 =

𝑉𝑖

𝑉
𝑐𝑜𝑠𝜙𝑖 

(30) 

 
𝑀2 =

𝑉2

𝑎2
=

𝑉2𝜌

𝑘𝑃
 

(31) 

 𝑑𝑃

𝑃
+

𝑘𝑀2

2
(
𝑓𝑃𝑤

𝐴
𝑑𝑥 +

2𝑑𝐹𝐷

𝑘𝑃𝑀2𝐴
− 2𝑟𝑖

𝑑𝑚̇

𝑚̇
) + 𝑘𝑀2

𝑑𝑉

𝑉
+ 𝑘𝑀2

𝑑𝑚̇

𝑚̇
= 0 

 

(32) 

Outro conceito importante é a definição de diâmetro hidráulico, pela 

equação (30): 

 
𝐷ℎ =

4𝐴

𝑃𝑤
 

(33) 

A equação (29) então fica, conforme em Hodge(1995): 

 𝑑𝑃

𝑃
+

𝑘𝑀2

2
(4𝑓

𝑑𝑥

𝐷ℎ
𝑑𝑥 +

2𝑑𝐹𝐷

𝑘𝑃𝑀2𝐴
− 2𝑟𝑖

𝑑𝑚̇

𝑚̇
) + 𝑘𝑀2

𝑑𝑉

𝑉
+ 

𝑘𝑀2
𝑑𝑚̇

𝑚̇
= 0 

(34) 

Shapiro (1956) introduz ainda o título de escoamento de forma a 

diferenciar o fluxo de gás do fluxo de líquido possivelmente escoando. 

 
𝑦𝑔 =

𝑉𝑔

𝑉
 

(35) 
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𝑦𝐿 =

𝑉𝐿

𝑉
 

(36) 

 
(1 − 𝑦)

𝑑𝑚̇

𝑚̇
= (1 − 𝑦𝑔)

𝑑𝑚𝑔̇

𝑚̇
+ (1 − 𝑦𝐿)

𝑑𝑚𝐿̇

𝑚̇
 

(37) 

A equação que Shapiro (1956) obtém, por fim, é: 

 

 𝑑𝑃

𝑃
+

𝑘𝑀2

2
(4𝑓

𝑑𝑥

𝐷ℎ
+

2𝑑𝐹𝐷

𝑘𝑃𝑀2𝐴
− 2𝑟𝑖

𝑑𝑚̇

𝑚̇
) + 𝑘𝑀2

𝑑𝑉

𝑉
+ 

𝑘(1 − 𝑦)𝑀2
𝑑𝑚̇

𝑚̇
= 0 

 

(38) 

De início, não será considerado a variação de líquido para gás e, 

portanto, a equação governante do equilíbrio de momentos do sistema é a 

equação 31. A mesma equação é apresentada por Oosthuizen (1994) com a 

equivalência: 

 4𝑓𝑑𝑥

𝐷ℎ
=

𝑓𝑃𝑑𝑥

𝐴
 

(39) 

   

 Função impulso 

 

A função impulso é definida por: 

 𝐼 = 𝑃𝐴 + 𝑚̇𝑉 = 𝑃𝐴(𝑎 + 𝑘𝑀2) (40) 

Esta função é importante para sistemas propulsores. Conforme ressalta 

Shapiro (1956), um incremento no valor desta função representa um aumento 

na força total exercida pelo escoamento nas paredes internas de um duto no 

sentido oposto ao escoamento. Na forma diferencial, fica: 

 𝑑𝐼

𝐼
=

𝑑𝐴

𝐴
+

𝑑𝑃

𝑃
+

𝑘𝑀2

1 + 𝑘𝑀2

𝑑𝑀2

𝑀2
 

(41) 

 

 Entropia (Segunda Lei da Termodinâmica) 

  

Através da aplicação da segunda lei da termodinâmica, a variação da 

entropia através do volume de controle para um gás perfeito num processo 

sem reações químicas, é dada por: 
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 𝑑𝑠

𝐶𝑝
=

𝑑𝑇

𝑇
−

(𝑘 − 1)

𝑘
𝑘  

(42) 

No caso de um fluido que evapora durante escoamento: 

 
𝑑𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑑𝑠 + (𝑠 − 𝑠𝑔)

𝑑𝑚𝑔̇

𝑚̇
+ (𝑠 − 𝑠𝐿)

𝑑𝑚𝐿̇

𝑚̇
 

(43) 

 

 Pressão de estagnação 

 

A pressão se relaciona com a pressão de estagnação através da 

relação: 

 

𝑃0 = 𝑃 (1 +
𝑘 − 1

2
𝑀2)

𝑘
𝑘−1

 

(44) 

Para o estado subsequente em 𝑑𝑥, é obtido, portanto: 

 

𝑃0 + 𝑑𝑃0 = (𝑃 + 𝑑𝑃) [1 +
𝑘 − 1

2
(𝑀2 + 𝑑𝑀2)]

𝑘
𝑘−1

 

(45) 

 Dividindo a equação 45 pela equação 44: 

 

𝑃0 + 𝑑𝑃0

𝑃0
= (1 +

𝑑𝑃

𝑃
) [1 +

(𝑘 − 1)𝑑𝑀2

2

1 +
(𝑘 − 1)𝑀2

2

]

𝑘
𝑘−1

 

(46) 

 A equação (46) em uma primeira ordem de precisão, fornece: 

 
𝑑𝑃0

𝑃0
=

𝑑𝑃

𝑃
+

𝑘𝑀2

2

1 +
(𝑘 − 1)𝑀2

2

𝑑𝑀2

𝑀2
  

(47) 
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3. EQUACIONAMENTO DO SISTEMA 

 

  PRINCIPAIS EQUAÇÕES E INCÓGNITAS 

 

Recapitulando as principais equações obtidas nas seções anteriores 

que definirão o sistema e permitirão, através da análise das relações entre as 

incógnitas e relações constituintes, simular o sistema dada uma entrada e 

condições de contorno. As principais equações obtidas são: 

 𝑑𝑝

𝑝
=

𝑑ρ

ρ
+

𝑑𝑇

𝑇
−

𝑑𝑊

𝑊
 

(48) 

 𝑑𝑀2

𝑀2
=

2𝑑𝑉

𝑉
−

𝑑𝑇

𝑇
 

(49) 

 𝑑𝑚̇

𝑚̇
=

𝑑𝜌

𝜌
+

𝑑𝐴

𝐴
+

𝑑𝑉

𝑉
 

(50) 

 𝑑𝑃

𝑃
+

𝑘𝑀2

2
(4𝑓

𝑑𝑥

𝐷ℎ
𝑑𝑥 +

2𝑑𝐹𝐷

𝑘𝑃𝑀2𝐴
− 2𝑟𝑖

𝑑𝑚̇

𝑚̇
) + 𝑘𝑀2

𝑑𝑉

𝑉
+ 

𝑘𝑀2
𝑑𝑚̇

𝑚̇
= 0 

 

(51) 

 𝑑𝐼

𝐼
=

𝑑𝐴

𝐴
+

𝑑𝑃

𝑃
+

𝑘𝑀2

1 + 𝑘𝑀2

𝑑𝑀2

𝑀2
 

(52) 

 
𝑑𝑇0

𝑇0
=

𝑑𝑇

𝑇
+

(𝑘 − 1)
2 𝑀2

1 +
(𝑘 − 1)

2 𝑀2

𝑑𝑀2

𝑀2
 

 

(53) 

 𝑑𝑠

𝐶𝑝
=

𝑑𝑇

𝑇
−

(𝑘 − 1)

𝑘

𝑑𝑃

𝑃
  

(54) 

 
𝑑𝑃0

𝑃0
=

𝑑𝑃

𝑃
+

𝑘𝑀2

2

1 +
(𝑘 − 1)𝑀2

2

𝑑𝑀2

𝑀2
 

(55) 

As incógnitas, portanto, que descrevem o escoamento quase 

unidimensional generalizado e resolvem as 8 equações anteriores são 12 e 

são: 
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Tabela 1 Variáveis do escoamento generalizado 

𝑑𝑃

𝑃
 

𝑑𝑇

𝑇
 

𝑑𝜌

𝜌
 

𝑑𝑀2

𝑀2
 

𝑑𝑉

𝑉
 

𝑑𝐴

𝐴
 

𝑑𝑚̇

𝑚̇
 

𝑑𝐼

𝐼
 

𝑑𝑇0

𝑇0

 

𝑑𝑠

𝑐𝑃

 
𝑑𝑃0

𝑃0

 
4𝑓𝑑𝑥

𝐷ℎ

+ 2
𝑑𝐹𝐷

𝑘𝑃𝑀2𝐴
−

2𝑟𝑖𝑑𝑚̇

𝑚̇
 

 

O sistema é, portanto, de ordem 8, e possui 12 incógnitas. Para 

equalizar o número de incógnitas com o número de equações serão definidas 

4 variáveis chave e consideradas como entradas do sistema e previamente 

conhecidas em função da variável independente 𝑥: 

 
𝑑𝐴

𝐴
: Que é função da geometria do conduto analisado e geralmente a 

área é definita por uma função 𝐴(𝑥); 

 
𝑑𝑇0

𝑇0
: Em grande parte dos problemas 𝑇0 pode ser expresso em função 

de 𝑥, muitas vezes através de um polinômio de segunda ordem e está 

relacionada com uma troca de calor do escoamento; 

 
𝑑𝑚̇

𝑚̇
 Também é uma condição de adição de massa característica da 

montagem do sistema analisado, e muitas vezes é nulo. 

 
O último termo da tabela pode ser divido no termo que define o atrito  

4𝑓𝑑𝑥

𝐷ℎ
 e/ou o termo que define o arrasto do sistema 2

𝑑𝐹𝐷

𝑘𝑃𝑀2𝐴
, 𝑑𝐹𝐷 depende da 

geometria de determinado corpo do sistema. O fator de atrito 𝑓 muitas vezes 

é constante ou depende da rugosidade do conduto e pode ser descrito como 

função da variável independente 𝑥. O diâmetro hidráulico do escoamento tem 

uma função correlata a 𝐴(𝑥).  Os termos restantes podem ser determinados 

pelas equações do sistema e são denominados por Hodge (1995) como 

propriedades do escoamento. É evidente que as variáveis conhecidas do 

sistema são constantes ou em função da variável 𝑥, o que faz sentido em uma 

análise de um escoamento unidimensional que varia justamente nesta 

direção. 



17 
 

 
 

  SISTEMA NA FORMA MATRICIAL  

 

As equações de 48 a 55 podem ser colocadas na forma da matriz 8x8 

56, com as variáveis A, B, C, D, E para diminuir as dimensões da matriz: 

 

[
 
 
 
 
 
 
 
 

1 −1 −1 0 0 0 0 0
0 1 0 1 −2 0 0 0
0 0 1 0 1 0 0 0
1 0 0 0 𝑘𝑀2 0 0 0

−1 0 0 −𝐴 0 1 0 0
0 1 0 −𝐵 0 0 0 0

𝑘 −
1

𝑘
−1 0 0 0 0 1 0

−1 0 0 −𝐶 0 0 0 1]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑑𝑃/𝑃
𝑑𝑇/𝑇
𝑑𝜌/𝜌

𝑑𝑀2/𝑀2

𝑑𝑉/𝑉
𝑑𝐼/𝐼
𝑑𝑠/𝑐𝑃

𝑑𝑃0/𝑃0 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

0
0

𝑑𝑚̇

𝑚̇
−

𝑑𝐴

𝐴
𝐷 + 𝐸
𝑑𝐴/𝐴
𝑑𝑇0/𝑇0

0
0 ]

 
 
 
 
 
 
 
 

 

 

 

(56) 

 Aonde: 

 
𝐴 =

𝑘𝑀2

1 + 𝑘𝑀2
 

(57) 

 

𝐵 =

(𝑘 − 1)𝑀2

2

1 +
(𝑘 − 1)𝑀2

2

 

(58) 

 

𝐶 =
(
𝑘𝑀2

2 )

1 +
(𝑘 − 1)𝑀2

2

 

 

(59) 

 
𝐷 = −

𝑘𝑀2

2
(
4𝑓𝑑𝑥

𝐷ℎ
+ 2

𝑑𝐹𝐷

𝑘𝑃𝑀2𝐴
) 

(60) 

 
𝐸 = −𝑘𝑀2(1 − 𝑟𝑖)

𝑑𝑚̇

𝑚̇
 

(61) 

 Para se obter as equações em função das 8 propriedades do sistema, 

basta inverter a equação 56 que após um trabalho algébrico fornece, em 

função dos termos 𝐹𝑖𝑗: 

 

[
 
 
 
 
 
 
 
 

𝑑𝑃/𝑃
𝑑𝑇/𝑇
𝑑𝜌/𝜌

𝑑𝑀2/𝑀2

𝑑𝑉/𝑉
𝑑𝐼/𝐼
𝑑𝑠/𝑐𝑃

𝑑𝑃0/𝑃0 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐹𝑃1 𝐹𝑃2 𝐹𝑃3 𝐹𝑃4 0 𝐹𝑃6 0 0
𝐹𝑇1 𝐹𝑇2 𝐹𝑇3 𝐹𝑇4 0 𝐹𝑇6 0 0
𝐹𝜌1 𝐹𝜌2 𝐹𝜌3 𝐹𝜌4 0 𝐹𝜌6 0 0

𝐹𝑀1 𝐹𝑀2 𝐹𝑀3 𝐹𝑀4 0 𝐹𝑀6 0 0
𝐹𝑉1 𝐹𝑉2 𝐹𝑉3 𝐹𝑉4 0 𝐹𝑉6 0 0
𝐹𝐼1 𝐹𝐼2 𝐹𝐼3 𝐹𝐼4 1 0 0 0
0 𝐹𝑠2 0 𝐹𝑠4 0 𝐹𝑠6 0 1
0 𝐹02 0 1 0 𝐹06 0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

0
0

𝑑𝑚̇

𝑚̇
−

𝑑𝐴

𝐴
𝐷 + 𝐸
𝑑𝐴/𝐴
𝑑𝑇0/𝑇0

0
0 ]

 
 
 
 
 
 
 
 

 

 

 

(62) 
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 Os termos 𝐹𝑖𝑗  são denominados por Oosthuizen (1994) como 

“Coeficientes de influência” e estão apresentados na tabela a seguir: 

Tabela 2 Coeficientes de influência 

𝐹𝑃1 =
𝑘𝑀2

𝑀2 − 1
 𝐹𝑃2 = −

𝑘(𝑘 − 1)𝑀4

2(𝑀2 − 1)
 

𝐹𝑃3 =
𝑘𝑀2

𝑀2 − 1
 𝐹𝑃4 = −

1 + (𝑘 − 1)𝑀2

𝑀2 − 1
  

𝐹𝑃6 = −
𝑘𝑀2 [1 +

(𝑘 − 1 )𝑀2

2
  ]

𝑀2 − 1
 

𝐹𝑇1 =
(𝑘 − 1)𝑀2

𝑀2 − 1
 

𝐹𝑇2 = −
(𝑘 − 1 )𝑀2(𝑘𝑀2 − 1)

2(𝑀2 − 1)
 𝐹𝑇3 =

(𝑘 − 1)𝑀2

𝑀2 − 1
 

𝐹𝑇4 = − 
(𝑘 − 1)𝑀2

𝑀2 − 1
 

𝐹𝑇6 =
(𝑘𝑀2 − 1) [1 +

(𝑘 − 1 )𝑀2

2   ]

𝑀2 − 1
 

𝐹𝜌1 =
1

𝑀2 − 1
 𝐹𝜌2 = − 

(𝑘 − 1)𝑀2

2(𝑀2 − 1)
 

𝐹𝜌3 =
𝑀2

𝑀2 − 1
 𝐹𝜌4 = −

1

𝑀2 − 1
 

𝐹𝜌6 =
[1 +

(𝑘 − 1 )𝑀2

2   ]

𝑀2 − 1
 𝐹𝑀1 = −2

[1 +
(𝑘 − 1 )𝑀2

2   ]

𝑀2 − 1
 

𝐹𝑀2 =
(𝑘𝑀2 − 1) [1 +

(𝑘 − 1 )𝑀2

2   ]

𝑀2 − 1
 𝐹𝑀3 = −2

[1 +
(𝑘 − 1 )𝑀2

2   ]

𝑀2 − 1
 

𝐹𝑀4 = 2
[1 +

(𝑘 − 1 )𝑀2

2   ]

𝑀2 − 1
 𝐹𝑀6 = −

(𝑘𝑀2 + 1) [1 +
(𝑘 − 1 )𝑀2

2   ]

𝑀2 − 1
 

𝐹𝑉1 = −
1

𝑀2 − 1
 𝐹𝑉2 =

(𝑘 − 1)𝑀2

2(𝑀2 − 1)
 

𝐹𝑉3 = −
1

𝑀2 − 1
 𝐹𝑉4 =

1

𝑀2 − 1
 

𝐹𝑉6 = −
1 +

(𝑘 − 1)𝑀2

2
𝑀2 − 1

 
𝐹𝐼1 =

𝑘𝑀2

𝑘𝑀2 + 1
 

𝐹𝐼2 =
𝑘𝑀2

𝑘𝑀2 + 1
 𝐹𝐼3 =

𝑘𝑀2

𝑘𝑀2 + 1
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𝐹𝐼4 =
1

𝑘𝑀2 + 1
 𝐹𝑠2 = −

(𝑘 − 1)𝑀2

2
 

𝐹𝑠4 = −
𝑘 − 1

𝑘
 𝐹𝑠6 = 1 +

𝑘 − 1

2
𝑀2 

𝐹02 =
𝑘𝑀2

2
 𝐹06 = −

𝑘𝑀2

2
 

  

A matriz 62 representa as oito equações diferenciais para cada uma 

das variáveis desconhecidas do sistema, expressos em função dos potenciais 

ou do número de Mach. Como esta análise enfatiza um escoamento 

unidimensional, a única variável independente do sistema é 𝑥 e, portanto, 

todos os diferenciais podem ser expressos em função desta variável. Assim, 

o diferencial do número de Mach se apresenta como 
𝑑𝑀2

𝑑𝑥
 e 

𝑑𝑀(𝑥)2

𝑑𝑥
 e a partir da 

matriz 62 pode ser obtido através de uma equação, no caso: 

 1

𝑀2

𝑑𝑀2

𝑑𝑥
=  2

𝛹

𝑀2 − 1

1

𝐴

𝑑𝐴

𝑑𝑥
+

(𝑘𝑀2 + 1)𝛹

1 − 𝑀2

1

𝑇0

𝑑𝑇0

𝑑𝑥

+
𝑘𝑀2𝛹

1 − 𝑀2
(
4𝑓

𝐷ℎ
+

2

𝑘𝑃𝐴𝑀2

𝑑𝐹𝐷

𝑑𝑥
)

+ (−2𝑟𝑖 +
2(1 + 𝑘𝑀2)𝛹

1 − 𝑀2
)

1

𝑚̇

𝑑𝑚̇

𝑑𝑥
   

 

 

(63) 

Definindo 𝛹 = 1 +
𝑘−1

2
𝑀2, termo que aparece de forma recorrente nas 

expressões deduzidas acima. 

Com estas equações expressas em função da variável independente 𝑥, se 

conhecido o comportamento das variáveis chave em função de 𝑥, é possível 

integrar a equação 63 e obter o número de Mach em função de 𝑥. 

  

  EFEITOS DE BLOCAGEM NO SISTEMA 

 

 Um dos principais efeitos que este trabalho visa analisar é operação de 

escoamentos com valores do número de Mach próximos a um. A redução da 

área, o aumento do atrito ou do calor adicionado ao escoamento podem gerar 

efeitos opostos dependendo do estado presente do escoamento. Em 

escoamentos subsônicos tais ajustes podem gerar uma redução no fluxo de 
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massa, enquanto em escoamentos supersônicos podem surgir choques ou 

mudanças abruptas dos parâmetros de escoamento definidos anteriormente. 

 Com o auxílio do parâmetro definido previamente, 𝛹, e considerando 

que a injeção de ar no sistema será realizada na mesma velocidade do 

escoamento (𝑟𝑖 = 0), a equação 63 que exprime o 𝑑𝑀2/𝑀2 em função das 

derivadas parciais de 𝑥, fica: 

 1

𝑀2

𝑑𝑀2

𝑑𝑥
=  2

𝛹

𝑀2 − 1

1

𝐴

𝑑𝐴

𝑑𝑥
+

(𝑘𝑀2 + 1)𝛹

1 − 𝑀2

1

𝑇0

𝑑𝑇0

𝑑𝑥

+
𝑘𝑀2𝛹

1 − 𝑀2
(
4𝑓

𝐷ℎ
+

2

𝑘𝑃𝐴𝑀2

𝑑𝐹𝐷

𝑑𝑥
)

+ (
2(1 + 𝑘𝑀2)𝛹

1 − 𝑀2
)

1

𝑚̇

𝑑𝑚̇

𝑑𝑥
 

 

 

(64) 

A variável dependente para esta equação é 𝑀 e a variável 

independente 𝑥. Posteriormente o sistema será resolvido com a integração de 

equações similares a equação 64 para cada uma das variáveis dependentes 

do escoamento. Por hora, a equação acima será útil para a análise desejada 

da operação próxima ou no ponto de blocagem. Já é possível observar que 

quando M=1 o denominador de alguns termos da função 65 vai a zero, o que, 

para um integrador numérico pode ser problemático na análise do sistema. A 

equação 65 pode ser expressa por: 

 1

𝑀2

𝑑𝑀2

𝑑𝑥
=

𝛹𝐺(𝑥, 𝑘,𝑀)

1 − 𝑀2
 

(65) 

Onde: 

 

𝐺(𝑥, 𝑘,𝑀) = −
𝑑𝐴

𝑑𝑥

2

𝐴
+ 𝑘𝑀2 (

4𝑓

𝐷ℎ
+ 2

𝑑𝐹𝐷

𝑑𝑥
𝑘𝑃𝑀2𝐴

) + (1 + 𝑘𝑀2 )
𝑑𝑇0

𝑑𝑥

1

𝑇0

+ 2(1 + 𝑘𝑀2 )
1

𝑚̇

𝑑𝑚̇

𝑑𝑥
 

 

(66) 

Com a função 𝐺(𝑥, 𝑘,𝑀) agora é possível observar que para um 

escoamento subsônico, um valor positivo da função 𝐺(𝑥, 𝑘,𝑀) incorre num 

incremento no número de Mach, enquanto num escoamento supersônico, o 

oposto é verdadeiro. O sinal de 𝐺(𝑥, 𝑘,𝑀) é controlado pela soma dos 

produtos de diferentes coeficientes de influência e admensionais. 
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A transição entre um número de Mach positivo e um número de Mach 

negativo passa por um ponto delicado, principalmente em uma solução 

numérica e deve ser levado em consideração. A localização do ponto de 

blocagem de um bocal é muitas vezes desconhecida, a exceção de um fluxo 

com uma mudança de área simples, isto é, sem atrito ou calor. Esta 

localização, por sua vez, depende de 𝑇𝑜(𝑥), 𝐴(𝑥) e 𝑓(𝑥), variáveis conhecidas 

do escoamento. 

 

  ONDAS DE CHOQUE 

 

Outro conceito que deve ser levado em consideração no estudo de um 

escoamento compressível são as ondas de choque. Uma onda de choque é 

uma onda que percorre o escoamento aonde a velocidade, a pressão e a 

temperatura mudam em quantidades finitas. 

Uma onda de choque tem comprimento desprezível frente as dimensões 

de um escoamento usual e a grandeza chave para sua descrição será a 

posição em que ocorre ao longo do escoamento, a partir da entrada do fluido. 

Para um gás calorificamente perfeito, a temperatura de estagnação 

permanece constante através da onda de choque normal. Entre um ponto 1 

que precede imediatamente a onda de choque e um ponto 2 imediatamente 

após a onda de choque, Hodge (1995) obtém as seguintes relações: 

 
𝑀2

2 =
𝑀1

2(𝑘 − 1) + 2

2𝑘𝑀1
2 − (𝑘 − 1)

 
(67) 

 

 𝑃2

𝑃1
=

2𝑘𝑀1
2

𝑘 + 1
−

𝑘 − 1

𝑘 + 1
 

(68) 

 
𝑇2

𝑇1
=

(1 +
(𝑘 − 1)

2 𝑀1
2) (

2𝑘
𝑘 − 1

𝑀1
2 − 1)

𝑀1
2 (

2𝑘
(𝑘 − 1)

+
𝑘 − 1

2 )
   

(69) 

 

 𝜌2

𝜌1
=

𝑉1

𝑉2
=

(𝑘 + 1)𝑀1
2

(𝑘 − 1)𝑀1
2 + 2

 
(70) 
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 Estas relações são suficientes para descrever a transição do estado do 

fluido que precede a onda de choque para o estado logo após a onda e 

possibilita simulações mais robustas, abordando casos aonde ocorrem ondas 

de choque ao longo do escoamento.  
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4. ROTINAS DE SIMULAÇÃO 

 

A lógica da simulação para um escoamento unidimensional qualquer 

provém das relações entre variáveis independentes do sistema e variáveis 

correlacionadas a elas através das relações descritas na matriz 2. 

A equação fundamental para simular um escoamento unidimensional ao 

longo de um eixo 𝑥 é a equação que descreve o comportamento do número 

de Mach ao longo desta dimensão. As demais propriedades do sistema estão, 

em sua maioria, correlacionadas a este valor. Conforme o que foi apresentado 

anteriormente, esta equação possui valores críticos para números de Mach 

próximos a um, devido a quocientes que apresentam o valor 1 − 𝑀2. Nas 

próximas seções será apresentado primeiramente uma rotina de simulação 

para casos que não envolvam a blocagem do escoamento, e a seguir a rotina 

que a partir do caso mais simples introduz os conceitos necessários a 

simulação deste sistema. 

 

 SIMULAÇÃO DE UM ESCOAMENTO GENERALIZADO SEM 

BLOCAGEM  

 

No caso aonde não há nenhum ponto com velocidade supersônica no 

escoamento, e, portanto, a equação 64 não apresenta nenhuma singularidade 

e pode ser integrada diretamente a partir das variáveis independentes 

apresentadas em função de 𝑥 através de um método integrativo qualquer. O 

método de Runge-Kutta de quarta ordem é eficaz para tal objetivo a partir de 

𝑑𝑀

𝑑𝑥
= 𝑓(𝑥, 𝑘,𝑀). Dada uma localização 𝑥, a solução para a próxima localização 

𝑥 + ∆𝑥, distante um passo ∆ da localização inicial pode ser dada por: 

 
𝑀(𝑥 + ∆𝑥) = 𝑀(𝑥) +

∆𝑥

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑘1 = 𝑓(𝑥, 𝑘,𝑀(𝑥)) 

𝑘2 = 𝑓 (𝑥 +
∆𝑥

2
, 𝑘,𝑀(𝑥) +

∆𝑥

2
𝑘1) 

𝑘3 = 𝑓(𝑥 +
∆𝑥

2
, 𝑘,𝑀(𝑥) +

∆𝑥

2
𝑘2) 

 

 

 

(71) 
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𝑘4 = 𝑓(𝑥 + ∆𝑥, 𝑘,𝑀(𝑥) + ∆𝑥𝑘3) 

A partir dos perfis dos potenciais-chave ao longo de 𝑥, é possível, portanto, 

descrever o comportamento do número de Mach. As demais variáveis podem 

ser obtidas em seguida através da integração das equações diferenciais 

presentes na tabela 2. De maneira mais direta, é possível obter, a partir do 

valor obtido para M e com uso de relações algébricas, razões entre as demais 

variáveis de um ponto 𝑥 (1) para o próximo  𝑥 + ∆𝑥 (2). 

Para obter a razão entre 𝑇1 e 𝑇2, parte-se da fórmula da temperatura de 

estagnação 𝑇0: 

 
𝑇0 = 𝑇(1 +

𝑘 − 1

2
𝑀2) 

(72) 

Realizando a razão entre 𝑇01
e 𝑇02

 obtém-se: 

 
𝑇2

𝑇1
=

𝑇02

𝑇01

(1 +
𝑘 − 1

2 𝑀1
2)

1 +
𝑘 − 1

2 𝑀2
2

 

 

(73) 

 O fluxo de massa através de uma seção pode ser escrito como: 

 

𝑚̇ = 𝜌𝐴𝑉 =
𝑃

𝑅𝑇
𝐴𝑀√𝑘𝑅𝑇 = 𝑃𝐴𝑀√

𝑘

𝑅𝑇
 

(74) 

 Realizando novamente a razão entre os estados 1 e 2: 

 
𝑚1̇

𝑚̇2
=

𝑃1𝐴1𝑀1

𝑃2𝐴2𝑀2

√
𝑇2

𝑇1
 

(75) 

 

A equação 75 pode ser resolvida para 𝑃2 e 𝑃1 de forma a se obter: 

 
𝑃2

𝑃1
=

𝑚̇2𝐴1𝑀1

𝑚̇1𝐴2𝑀2

√
𝑇2

𝑇1
 

(76) 

As razões entre as áreas e os fluxos de 1 e 2 são conhecidas dadas as 

premissas utilizadas neste trabalho e, portanto, 
𝑃2

𝑃1
 pode ser obtido a partir do 

resultado da equação 73. 

De maneira análoga, a razão entre os valores do número de Mach entre 

as seções 1 e 2, e levando em consideração que 𝑘  e 𝑅 são constantes ao 
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longo do escoamento, uma vez que não ocorrem reações químicas e nem 

outra subtância é injetada no sistema, fornece que: 

 
𝑉2

𝑉1
=

𝑀2

𝑀1

√
𝑇2

𝑇1
 

(77) 

 Novamente, o resultado desta equação é conhecido a partir da equação 

73. A razão entre a equação de estado para os estados 1 e 2 pode ser 

retrabalhada de forma que se obtenha: 

 𝜌2

𝜌1
=

𝑃2

𝑃1

𝑇1

𝑇2
   

(78) 

A partir da relação entre pressão e pressão de estagnação descrita 

abaixo, é possível se obter também uma razão para as pressões de 

estagnação. 

 
𝑃

𝑃0
= (

𝑇

𝑇0
)

𝑘
𝑘−1

 

(79) 

 
𝑃02

𝑃01

=
𝑃2

𝑃1
(
𝑇02

𝑇1

𝑇01
𝑇2

 )

𝑘
𝑘−1

 

(80) 

 A entropia pode ser calculada diretamente com: 

 ∆𝑠

𝑐𝑃
= ln

𝑇2

𝑇1
−

𝑘 − 1

𝑘
ln (

𝑃2

𝑃1
) 

(81) 

 Estas relações descritas nas linhas acima são conhecidas na literatura 

como equações integrais, uma vez que possibilitam que a cada integração do 

número de Mach se obtenham as demais propriedades do escoamento para 

este novo estado sem que haja a necessidade de se integrar uma a uma as 

equações diferenciais da tabela 2. Por ordem de aplicação, estas equações 

são listadas aqui como: 
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𝑇2

𝑇1
=

𝑇02

𝑇01

(1 +
𝑘 − 1

2 𝑀1
2)

1 +
𝑘 − 1

2 𝑀2
2

 

𝑃2

𝑃1
=

𝑚̇2𝐴1𝑀1

𝑚̇1𝐴2𝑀2

√
𝑇2

𝑇1
 

𝑉2

𝑉1
=

𝑀2

𝑀1

√
𝑇2

𝑇1
 

𝜌2

𝜌1
=

𝑃2

𝑃1

𝑇1

𝑇2
   

𝑃02

𝑃01

=
𝑃2

𝑃1
(
𝑇02

𝑇1

𝑇01
𝑇2

 )

𝑘
𝑘−1

 

∆𝑠

𝑐𝑃
= ln

𝑇2

𝑇1
−

𝑘 − 1

𝑘
ln (

𝑃2

𝑃1
) 

 

 

 

 

 

 

 

(82) 

 Para que se obtenha uma solução é necessário, primeiramente 

resolver numericamente a equação 83 através do método de integração 

selecionado, para então prosseguir com o cálculo das demais propriedades a 

partir do resultado obtido. 

 Para se implementar o método de Runge-Kutta de quarta ordem, por 

exemplo, os coeficientes do método serão calculados a partir de 
𝑑𝑀

𝑑𝑥
, aonde: 

 𝑑𝑀

𝑑𝑥
=  𝑀

𝛹

1 − 𝑀2
[−

1

𝐴(𝑥)

𝑑𝐴(𝑥)

𝑑𝑥
+

(𝑘𝑀2 + 1)

2

1

𝑇0

𝑑𝑇0

𝑑𝑥

+
𝑘𝑀2

2
(

4𝑓

𝐷ℎ(𝑥)
+

2

𝑘𝑃𝐴𝑀2

𝑑𝐹𝐷

𝑑𝑥
)

+ (1 + 𝑘𝑀2)
1

𝑚(𝑥)̇

𝑑𝑚̇(𝑥)

𝑑𝑥
] 

 

 

(83) 

 Zucrow e Hoffman (1976) estabelecem um método pautado nas 

equações listadas em 82 para a resolução numérica de um escoamento 

generalizado. O processo de quatro etapas pode ser descrito como: 
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1. Definir as condições iniciais, usualmente o número de Mach, a 

velocidade, a densidade, as pressões e temperaturas do escoamento 

e de estagnação. Desenvolver uma relação entre as variáveis 

independentes e o eixo 𝑥; 

2. Utilizar a equação 71 para integrar a equação 83 para um passo ∆𝑥 

definido previamente; 

3. Utilizar as equações de integração presentes em 82 para estabelecer 

as propriedades no novo estado 𝑥 + ∆𝑥; 

4. Repetir os passos 2 e 3 até o alcance de 𝑥 de interesse. 

 

De forma a melhor ilustrar o procedimento 1 descrito acima, os potenciais-

chave foram descritos através de funções chave e a equação 83 foi reescrita 

através dessas funções listadas abaixo: 

 
𝑓1(𝑥) =

1

𝐴(𝑥)
∗
𝑑𝐴(𝑥)

𝑑𝑥
 

𝑓2(𝑥) =
1

𝑇0(𝑥)
∗

𝑑𝑇0(𝑥)

𝑑𝑥
 

𝑓3(𝑥) = 𝐷(𝑥) 

𝑓4(𝑥) =
𝑑𝐹𝐷(𝑥)

𝑑𝑥
 

𝑓5(𝑥) =
1

𝑚̇
∗
𝑑𝑚̇

𝑑𝑥
 

 

 

 

(84) 

 

Assim, a equação 83 pode ser reescrita conforme a equação: 

 𝑑𝑀

𝑑𝑥
=  𝑀

𝛹

1 − 𝑀2
[−𝑓1(𝑥) +

(𝑘𝑀2 + 1)

2
𝑓2(𝑥)

+
𝑘𝑀2

2
(

4𝑓

𝑓3(𝑥)
+

2

𝑘𝑃𝐴𝑀2
𝑓3(𝑥)) + (1 + 𝑘𝑀2)𝑓5(𝑥)] 

(85) 

 

 SIMULAÇÃO DE UM ESCOAMENTO GENERALIZADO COM 

BLOCAGEM  
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Para simular um escoamento que passa por um ponto com velocidade 

igual à velocidade do som, é necessário estabelecer a localização do ponto 

aonde  ocorre a singularidade das equações diferenciais do escoamento que 

relacionam o número de Mach com as variáveis independentes. Para tanto, 

vamos relembrar as equações: 

 1

𝑀2

𝑑𝑀2

𝑑𝑥
=

𝛹𝐺(𝑥, 𝑘,𝑀)

1 − 𝑀2
 

(86) 

 

𝐺(𝑥, 𝑘,𝑀) = −
𝑑𝐴

𝑑𝑥

2

𝐴
+ 𝑘𝑀2 (

4𝑓

𝐷ℎ
+ 2

𝑑𝐹𝐷

𝑑𝑥
𝑘𝑃𝑀2𝐴

) + (1 + 𝑘𝑀2 )
𝑑𝑇0

𝑑𝑥

1

𝑇0

+ 2(1 + 𝑘𝑀2 )
1

𝑚̇

𝑑𝑚̇

𝑑𝑥
 

(87) 

A equação (84) pode ser descrita como: 

 1 − 𝑀2

𝑀2

𝑑𝑀2

𝑑𝑥
= 𝛹𝐺(𝑥, 𝑘,𝑀) 

(88) 

No ponto aonde M=1, 𝐺(𝑥, 𝑘,𝑀) = 0, uma vez que 𝛹 não é igual a zero no 

ponto de blocagem. O ponto 𝑥 aonde ocorre a blocagem do escoamento é, 

portanto, raiz da equação 86. Hodge (1995) chama a atenção para o fato de 

que: 

 
lim
𝑀→1

𝐺(𝑥, 𝑘,𝑀)

1 − 𝑀2
=

0

0
 

(89) 

Uma indeterminação matemática. O valor de 
𝑑𝑀

𝑑𝑥
 deve ser, portanto, 

determinado com o auxílio da regra de L’Hospital, através da qual se obtém: 

 

lim
𝑀→1

𝑑𝑀

𝑑𝑥
= lim

𝑀→1

𝑀𝛹𝐺(𝑥, 𝑘,𝑀)

2(1 − 𝑀2)
=

𝑘 + 1

4
(

𝑑𝐺
𝑑𝑥

−2𝑀
𝑑𝑀
𝑑𝑥

)

𝑀=1

 

(90) 

Desprezando-se 
𝑑𝐹𝐷

𝑑𝑥
, obtém-se para o termo 

𝑑𝐺

𝑑𝑥
: 
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 𝑑𝐺

𝑑𝑥
= [−2

𝑑

𝑑𝑥
(
1

𝐴

𝑑𝐴

𝑑𝑥
) + 𝑘𝑀2

𝑑

𝑑𝑥
(
4𝑓

𝐷ℎ
) + (1 + 𝑘𝑀2)

𝑑

𝑑𝑥
(
1

𝑇0

𝑑𝑇0

𝑑𝑥
)

+ 2(1 + 𝑘𝑀2)
𝑑

𝑑𝑥
(
1

𝑚̇

𝑑𝑚̇

𝑑𝑥
)   ]

+ [2𝑘𝑀
𝑑𝑀

𝑑𝑥
(
4𝑓

𝐷ℎ
) + 2𝑘𝑀

𝑑𝑀

𝑑𝑥
(
1

𝑇0

𝑑𝑇0

𝑑𝑥
)

+ 4𝑘𝑀
𝑑𝑀

𝑑𝑥
(
1

𝑚̇

𝑑𝑚̇

𝑑𝑥
)] 

 

 

 

(91) 

Avaliando a equação 89 para o ponto aonde o número de Mach é igual a  

 𝑑𝐺

𝑑𝑥
= [−2

𝑑

𝑑𝑥
(
1

𝐴

𝑑𝐴

𝑑𝑥
) + 𝑘

𝑑

𝑑𝑥
(
4𝑓

𝐷ℎ
) + (1 + 𝑘)

𝑑

𝑑𝑥
(
1

𝑇0

𝑑𝑇0

𝑑𝑥
)

+ 2(1 + 𝑘)
𝑑

𝑑𝑥
(
1

𝑚̇

𝑑𝑚̇

𝑑𝑥
)   ]

+ (
𝑑𝑀

𝑑𝑥
)
𝑀=1

[2𝑘 (
4𝑓

𝐷ℎ
) + 2𝑘 (

1

𝑇0

𝑑𝑇0

𝑑𝑥
) + 4𝑘(

1

𝑚̇

𝑑𝑚̇

𝑑𝑥
)] 

(92) 

Obtém se então, para a equação 88: 

 

(
𝑑𝑀

𝑑𝑥
)
2

𝑀=1
= −

𝑘 + 1

8
[−2

𝑑

𝑑𝑥
(
1

𝐴

𝑑𝐴

𝑑𝑥
)
𝑀=1

+ 𝑘
𝑑

𝑑𝑥
(
4𝑓

𝐷ℎ
)
𝑀=1

+ (1 + 𝑘)
𝑑

𝑑𝑥
(
1

𝑇0

𝑑𝑇0

𝑑𝑥
)

𝑀=1

+ 2(1 + 𝑘)
𝑑

𝑑𝑥
(
1

𝑚̇

𝑑𝑚̇

𝑑𝑥
)
𝑀=1

   ]

−
𝑘 + 1

8
(
𝑑𝑀

𝑑𝑥
)
𝑀=1

[2𝑘 (
4𝑓

𝐷ℎ
) + 2𝑘 (

1

𝑇0

𝑑𝑇0

𝑑𝑥
)

+ 4𝑘 (
1

𝑚̇

𝑑𝑚̇

𝑑𝑥
)]

𝑀=1
 

 

 

 

 

(93) 

 Esta equação fornece 2 valores para 
𝑑𝑀

𝑑𝑥
 no ponto sônico. O valor 

negativo corresponde ao trecho subsônico próximo ao ponto sônico, e em 

contrapartida o valor positivo corresponde ao trecho supersônico próximo a 

este ponto. 

A simulação de um escoamento com ponto sônico, parte então da 

determinação da localização deste ponto a partir da equação 92: 
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𝐺(𝑥, 𝑘,𝑀)𝑀=1 = (−
𝑑𝐴

𝑑𝑥

2

𝐴
+ 𝑘𝑀2 (

4𝑓

𝐷ℎ
+ 2

𝑑𝐹𝐷

𝑑𝑥
𝑘𝑃𝑀2𝐴

)

+ (1 + 𝑘𝑀2 )
𝑑𝑇0

𝑑𝑥

1

𝑇0
)

𝑀=1

= (−
𝑑𝐴

𝑑𝑥

2

𝐴
+ 𝑘 (

4𝑓

𝐷ℎ
+ 2

𝑑𝐹𝐷

𝑑𝑥
𝑘𝑃𝐴

)

+ (1 + 𝑘 )
𝑑𝑇0

𝑑𝑥

1

𝑇0
)

𝑀=1

= 0 

(94) 

Em seguida é necessário se obter os valores os valores 
𝑑𝑀

𝑑𝑥
 nos arredores 

do ponto sônico, através da equação 91. Com estes valores conhecidos é 

possível avançar um passo antes e depois do ponto sônico, dando sequência 

à simulação com o método apresentado na seção 4.1. Hodge (1995) sugere 

que a partir da localização sônica do escoamento se obtenha primeiramente 

os valores na entrada x=0.0, para então se integrar adiante e encontrar as 

distribuições no número de Mach e as demais propriedades.  
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5. SIMULAÇÕES PROPOSTAS 

 

De forma a validar o equacionamento proposto na seção anterior, serão 

realizadas, nesta seção, simulações que permitam a visualização da evolução 

das propriedades do fluido ao longo de um escoamento sujeito a efeitos 

combinados de atrito, calor, adição de massa e mudança de área, por 

exemplo. 

A partir dos livros clássicos de estudo da dinâmica de fluidos 

compressíveis, foram selecionados problemas com grau de dificuldade 

incremental de forma a permitir uma implementação correta da metodologia 

proposta neste trabalho e análise da influência dos diferentes efeitos que 

atuam sobre um escoamento que se enquadre nas hipóteses simplificadoras 

adotadas ao longo deste trabalho. Os primeiros problemas são facilmente 

implementados no Matlab® e a abordagem proposta pode ser utilizada em um 

curso de dinâmica de fluidos compressíveis apresentando o conteúdo de 

escoamento generalizado unidimensional de forma didática. 

 

 PROBLEMA 1: PROBLEMA 9.3 PROPOSTO POR ZUCROW E 

HOFFMAN (1976) 

 

O primeiro problema selecionado apresenta uma variação de área 

combinada com a atuação de atrito no escoamento, ocasionando perdas na 

pressão de estagnação do escoamento. 

 

 Enunciado 

 

Ar entra em um difusor subsônico com um número de Mach igual a 0,9. As 

paredes do difusor apresentam inclinação igual a 𝛼 = 7° e o raio de entrada é 

igual a 𝑦 = 0.25𝑚. O ar apresenta k constante e igual a 1,4 e 𝑓 = 0.01. O duto 

apresenta comprimento de 1m. 
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 Hipóteses adotadas 

 

Para a resolução deste problema, são adotadas as mesmas hipóteses do 

desenvolvimento das equações da seção 4. O escoamento é considerado em 

regime permanente e plenamente desenvolvido. O ar é considerado um gás 

perfeito, com k constante. A temperatura de estagnação é considerada 

constante e não existem fontes externas de trabalho ao sistema à exceção do 

atrito. 

 

 Análise do Problema 

 

Este escoamento é uma versão simplificada do equacionamento proposto 

nas seções anteriores, apresentando somente atrito e mudança de área. Além 

disso, não há incremento à vazão mássica do sistema. 

O raio da seção apresenta a seguinte forma: 

 𝑦(𝑥) = 𝑦𝑖 + tan(𝛼) ∗ 𝑥 (95) 

Sendo 𝑦𝑖 = 0,25𝑚 e 𝛼 = 7°. Desta forma, a área de seção se apresenta da 

seguinte forma: 

 

Figura 5-1 Área da seção transversal ao longo do duto 
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 O primeiro e o terceiro potenciais-chave podem então ser calculados e 

os demais são nulos para este problema. Eles são, portanto, para este 

problema: 

 
𝑓1(𝑥) =

1

𝐴(𝑥)
∗
𝑑𝐴(𝑥)

𝑑𝑥
= 2 ∗

𝑡𝑎𝑛𝛼

𝑦𝑖 + 𝑡𝑎𝑛𝛼 ∗ 𝑥
𝑑𝑥 

𝑓2(𝑥) =
1

𝑇0(𝑥)
∗

𝑑𝑇0(𝑥)

𝑑𝑥
= 0 

𝑓3(𝑥) = 𝐷(𝑥) = 2𝑦𝑖 + 2𝑡𝑎𝑛𝛼 ∗ 𝑥 

𝑓4(𝑥) =
𝑑𝐹𝐷(𝑥)

𝑑𝑥
= 0 

𝑓5(𝑥) =
1

𝑚̇
∗
𝑑𝑚̇

𝑑𝑥
= 0 

 

 

 

(96) 

Todos os potenciais-chave foram calculados com êxito em relacão à 

variável independente do escoamento unidimensional 𝑥 e o cálculo do número 

de Mach pode então ser realizado a partir da integração da equação (83) 

através do método de Runge-Kutta de quarta ordem apresentado 

anteriormente. O número de Mach obtido para este escoamento apresenta a 

seguinte forma:  

 

Figura 5-2 Número de Mach ao longo do escoamento 
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 Conclusões 

 

O comportamento do difusor subsônico foi representado pelo programa 

com êxito, apresentando com sucesso a relação inversamente proporcional 

entre o aumento de área com a redução no número de Mach.  Não foram 

realizadas análises para as demais propriedades deste problema devido ao 

seu caráter extremamente simplificado. 

 

  PROBLEMA 2: PROBLEMA 12.2 PROPOSTO POR OOSTHUIZEN E 

CARSCALLEN (1994) 

 

Este problema propõe uma análise de um pequeno bocal repartida em 3 

casos separados, possibilitando uma comparação de como o escoamento se 

comporta quando submetido à diferentes efeitos. Os 3 diferentes cenários 

permitem observar a importância do estudo de escoamentos generalizados. 

A desconsideração de algum dos efeitos que atuam sobre o escoamento 

impõe mudanças significativas aos resultados obtidos, que durante um 

processo de dimensionamento de um bocal poderia incorrer em falhas e 

prejuízos econômicos. 

 

 Enunciado 

 

Ar escoa através de um bocal axisimétrico entrando com um número de 

Mach 𝑀 = 1,2, temperatura estática de 400°𝐶 e pressão estática de 30𝑘𝑃𝑎. A 

entrada do bocal possui diâmetro  de 3cm e sua saída  de 6cm. O 

comprimento do bocal é de 9cm. A parede do bocal é paralela ao eixo de 

escoamento em sua saída. O diâmetro do bocal varia conforme um polinômio 

de segunda ordem e apresenta o seguinte formato: 

 
𝐷(𝑥) = 0,03 +

2

3
𝑥 − 3.704𝑥2 

(97) 

Considerar os seguintes casos: 

1. O escoamento é considerado adiabático e sem atrito; 
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2. O escoamento no bocal  é considerado adiabático e o fator  de atrito 

pode  ser assumido como 𝑓 = 0,005; 

3. A temperatura de estagnação do escoamento decai linearmente em 

150K e o fator de atrito pode novamente ser considerado como 𝑓 =

0,005. 

 
 Análise do problema 

 

Este problema possibilita a comparação entre os 3 casos sob diferentes 

influências de fatores externos. Todos os potenciais-chave podem ser 

facilmente estabelecidos em relação à variável independente 𝑥. Seguindo 

o polinômio proposto no enunciado, o diâmetro do bocal apresenta o 

seguinte formato: 

 

Figura 5-3 Formato do bocal analisado 

 Os potenciais-chave apresentam diferentes formas para os 3 casos. Os 

potenciais que são idênticos para os 3 casos são: 

 
𝑓1(𝑥) =

1

𝐴(𝑥)
∗
𝑑𝐴(𝑥)

𝑑𝑥
=

2

𝐷(𝑥)
(
2

3
− 7.408𝑥) 

𝑓3(𝑥) = 𝐷(𝑥) = 0,03 +
2

3
𝑥 − 3.704𝑥2 

 

 

 

(98) 
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𝑓4(𝑥) =
𝑑𝐹𝐷(𝑥)

𝑑𝑥
= 0 

𝑓5(𝑥) =
1

𝑚̇
∗
𝑑𝑚̇

𝑑𝑥
= 0 

 A diferença no fator de atrito considerado terá interação direta com o 

potencial-chave 𝑓3. O potencial-chave 𝑓2 tem o seguinte formato para os 3 

casos: 

 𝐶𝑎𝑠𝑜 𝐴: 𝑓2(𝑥) = 0 

𝐶𝑎𝑠𝑜 𝐵: 𝑓2(𝑥) = 0 

𝐶𝑎𝑠𝑜 𝐶: 𝑓2(𝑥) = 𝑇0𝑖𝑛𝑖𝑐𝑖𝑎𝑙 +
∆𝑇0

𝐿
𝑥 

 

(99) 

 Com os potenciais-chave representados para os 3 casos em relação à 

variável independente 𝑥, a rotina de simulação proposta neste trabalho pode 

ser implementada com êxito novamente.  

Os resultados obtidos são apresentados a seguir: 
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Figura 5-4 Número de Mach para o 
Problema 2 

 

Figura 5-5 Pressões de estagnação para o 
problema 2 

 

Figura 5-6 Pressões estáticas para o 
problema 2 

 

Figura 5-7 Temperaturas estáticas para o 
probema 2 

Tabela 3 Resultados do problema 2 

 

  Início  Caso A  Caso B  Caso C 

Número de Mach  1.20  2.97  2.82  4.14 

Temperatura de estagnação  867.0 K  867.0 K  867.0 K  722.0 K 

Temperatura estática  673.2 K  313.3 K  334.9 K  163.0 K 

Pressão estática  30000.0 Pa  2067.5 Pa  2255.0 Pa  1071.0 Pa 

Pressão de estagnação  72749.0 Pa  72930.0 Pa  62951.0 Pa  195790.0 Pa 

Velocidade de saída  624.1 m/s  1054.7 m/s  1033.9 m/s  1059.7 m/s 
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 Análise dos Resultados 

 

A complexidade incremental dos casos possibilitou comparar a influência 

dos efeitos externos que atuam sobre o escoamento. No caso A, o aumento 

da área no bocal supersônico incorreu em um aumento no número de Mach 

simultâneo a uma redução na temperatura estática e na pressão estática, 

conforme o esperado. A adição do atrito do escoamento com a parede dos 

bocais entre os casos B e A, incorreu em uma queda no número de Mach e 

uma redução na pressão de estagnação, decorrente da variação na entropia 

do sistema e irreversibilidades associadas ao atrito, mesmo com a dimensão 

reduzida do bocal. A troca de calor representada no Caso C incorre em 

mudanças ainda maiores em relação ao observado no caso B. O número de 

Mach obtido foi significativamente maior e a pressão de estagnação aumentou 

de maneira abrupta como pode ser observado na figura 5.5. 

 

  PROBLEMA 3: PROBLEMA 6.6 - HODGE (1995) 

 

Seguindo a metodologia proposta de aumento incremental na 

complexidade do problema estudado, este problema apresenta 

simultaneamente incremento na vazão mássica, variação na temperatura de 

estagnação, mudança de área e onda de choque. Este problema será 

estudado mais a fundo em relação aos casos anteriores que se apresentaram 

como uma boa ferramenta didática para o estudo de escoamentos 

generalizados unidimensionais. 

 

 Enunciado 

 

Ar entra num duto com número de Mach de 2,0, pressão de estagnação 

de 200kPa e temperatura de estagnação de 1000K. A geometria do duto tem 

2 metros de comprimento e é composta por duas seções geometricamente 

distintas, cada uma com um metro de comprimento. A seção inicial possui 

diâmetro constante de 0,2m e a seção posterior possui um formato senoidal 
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com diâmetro inicial de 0,2m e diâmetro final de 0,4m. A temperatura de 

estagnação varia linearmente de 1000K a 600K entre a entrada e a saída e o 

fluxo de massa varia do mesmo modo, de tal forma que o fluxo de massa na 

saída é 1,15 vezes maior do que na entrada. Uma onda de choque ocorre a 

1,5 metros da entrada. O fator de atrito é constante ao longo do duto e igual a 

0,005. 

 

 Hipóteses adotadas 

 

Para a resolução deste problema, são adotadas as mesmas hipóteses do 

desenvolvimento das equações da seção 4. O escoamento é considerado em 

regime permanente e plenamente desenvolvido. O ar é considerado um gás 

perfeito, com k constante. 

A variação da temperatura de estagnação e da vazão de massa é 

considerada linear ao longo do tudo. 

 

 Equacionamento do problema 

 

a. Diâmetro do duto 
 

O diâmetro do duto pode ser separado em duas funções, sendo elas: 

i. 0 ≤ 𝑥 ≤ 1 
ii.  𝐷(𝑥) = 𝐷0   

(100) 
 

iii. 1 ≤ 𝑥 
 

 
𝐷(𝑥) =

𝐷0 + 𝐷𝑓

2
+

𝐷0 − 𝐷𝑓

2
cos(𝜋(𝑥 − 𝐿1)) 

(101) 

Onde 𝐿1 = 1𝑚, que equivale ao comprimento desta seção. Graficamente, o 

diâmetro pode ser observado na o gráfico: 
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Figura 5-8 Diâmetro do duto pela posição 

b. Área das seções 
 

De maneira análoga, a área do duto pode ser dividida em duas seções, 

cada uma com uma função para o diâmetro distinta e sendo a área: 𝐴(𝑥) =

𝜋 ∗
𝐷(𝑥)2

4
 

A área do escoamento, fica: 
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Figura 5-9 Área do duto ao longo do escoamento 

c. Temperatura de estagnação 
 

Como a variação da temperatura de estagnação ao longo do duto pode 

ser aproximada por uma função linear, ela pode ser escrita como: 

 
𝑇0(𝑥) = 𝑇0𝑖 +

𝑇0𝐹 − 𝑇0𝑖

𝐿
𝑥 

(102) 

Sendo os índices i e F, para início e final, respectivamente. 

d. Fluxo de massa 
 

O valor absoluto da vazão mássica não é essencial para a resolução do 

problema, entretanto a razão entre valores das vazões mássicas ao longo do 

duto o é. É conhecido que a vazão mássica de saída é 1,15x maior do que a 

inicial. Para efeito de equacionamento vazão mássica inicial será considerada 

como 1 e a final como 1,15. Como a variação do fluxo de massa ao longo do 

duto pode ser aproximada por uma função linear, ela pode ser escrita como: 

 
𝑚̇(𝑥) = 𝑚̇𝑖 +

𝑚̇𝐹 − 𝑚̇𝑖

𝐿
𝑥 

(103) 

Sendo os índices i e F, para início e final, respectivamente. 

Graficamente, esta distribuição é representada por: 
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Figura 5-10 Razão da vazão mássica ao longo de x 

Estas equações e suas derivadas são suficientes para equacionar os 

potenciais independentes e prosseguir com o método proposto na seção 

anterior. Para este escoamento, em particular, são obtidos os seguintes 

potenciais: 

 i. 0 ≤ 𝑥 ≤ 1 

𝑓1(𝑥) =
1

𝐴(𝑥)
∗
𝑑𝐴(𝑥)

𝑑𝑥
= 0 

𝑓3(𝑥) = 𝐷(𝑥) = 𝐷0 

ii. 1 ≤ 𝑥 

𝑓1(𝑥) =
1

𝐴(𝑥)
∗
𝑑𝐴(𝑥)

𝑑𝑥
=

2 ∗ 𝜋 ∗
𝐷0 − 𝐷𝑓

2 ∗ 𝑠𝑒𝑛(𝜋(𝑥 − 𝐿1))

𝐷0 + 𝐷𝑓

2 +
𝐷0 − 𝐷𝑓

2 cos(𝜋(𝑥 − 𝐿1))

= 0.2 ∗ 𝜋 ∗
𝑠𝑒𝑛(𝜋(𝑥 − 1))

0.3 − 0.1𝑐𝑜𝑠(𝜋(𝑥 − 1))
 

𝑓3(𝑥) = 𝐷(𝑥) =
𝐷0+𝐷𝑓

2
+

𝐷0−𝐷𝑓

2
cos(𝜋(𝑥 − 𝐿1))=0.3 − 0.1𝑐𝑜𝑠(𝜋(𝑥 − 1)) 

iii. ∀𝑥 

𝑓2(𝑥) =
1

𝑇0(𝑥)
∗

𝑑𝑇0(𝑥)

𝑑𝑥
=

1

𝑇0𝑖 ∗ 𝐿
𝑇0𝐹 − 𝑇0𝑖

+ 𝑥
 

 

 

 

(104) 
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𝑓4(𝑥) =
𝑑𝐹𝐷(𝑥)

𝑑𝑥
= 0 

𝑓5(𝑥) =
1

𝑚̇
∗
𝑑𝑚̇

𝑑𝑥
=

1

𝑚̇𝑖 ∗ 𝐿
𝑚̇𝐹 − 𝑚̇𝑖

+ 𝑥
 

Com os potenciais independentes calculados, foi possível calcular o 

número de Mach ao longo do eixo x e posteriormente, através de etapas 

iterativas, calcular as funções e temperaturas para o escoamento conforme 

os gráficos abaixo: 

 

Figura 5-11 Numero de Mach ao longo do escoamento 
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Figura 5-12 Temperaturas estáticas ao longo do escoamento 

 

Figura 5-13 Pressões estáticas ao longo do escoamento 

 



45 
 

 
 

 Análise de Resultados 

 

Neste estudo múltiplos efeitos atuaram simultaneamente sobre o problema 

e a abordagem proposta neste trabalho tornando possível a obtenção de 

resultados coerentes com o esperado para diferentes situações.  

Como observado, no primeiro trecho aonde 0 ≤ 𝑥 ≤ 1𝑚, não há variação 

de área do duto e a variação no número de Mach é mais sutil. A partir deste 

trecho o número de Mach aumenta significativamente com a nova geometria 

do duto. Por fim, quando 𝑥 = 1,5𝑚, a onda de choque incorre em mudanças 

significativas nas características do escoamento e ao final o número de Mach 

é pequeno o suficiente para a temperatura e pressão estáticas convergirem 

para seus pares de estagnação. 

 

  AVALIAÇÃO DO MODELO 

O modelo de escoamento quase unidimensional é substancialmente mais 

simples do que técnicas mais recentes de simulação numérica de fluidos, 

ignorando efeitos de turbulência mais complexos. Este modelo, entretanto, 

possibilita de maneira clara, a análise de diferentes efeitos que ocorrem 

simultâneamente no escoamento, atingindo resultados semelhantes aos 

principais livros-texto do tema. 
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6. CONCLUSÕES 

 

Em cursos de graduação, o estudo de escoamentos levando em conta 

efeitos da compressibilidade muitas vezes não recebe a devida importância, 

ou então é apresentado de maneira introdutórioa. Em geral, são apresentados 

efeitos isolados atuando sobre uma seção de escoamento, sejam eles efeitos 

de atrito, troca de calor, variação de área, entre outros. Esta metodologia 

dificulta uma visão global do estudante sobre interação entre estes efeitos e 

relações de dominância entre eles sobre as principais propriedades do 

sistema. Alguns efeitos típicos do sistema compressível, como ondas de 

choque, podem ser apresentados de maneira mais tangível a partir da 

vizualição de gráficos de pressão e temperatura, por exemplo, ao longo de um 

bocal. 

Nos exemplos resolvidos ao longo deste trabalho, o equacionamento 

desenvolvido com base em autores clássicos (Shapiro, 1954; Zucrow, 1976 e 

Hodge, 1995), se mostra robusto o suficiente e, com sucesso, simula 

complexos escoamentos unidimensionais a partir de condições iniciais e 

potenciais-chave do escoamento conhecidos.  

Ainda que a dedução do modelo compressível unidimensional possa 

fugir do escopo de um curso de graduação, este modelo pode ser facilmente 

implementado no formato de um programa em linguagem de simulação 

simples, uma vez que sua simulação se alicerça em rotinas numéricas com 

métodos integrativos relativamente simples. A simulação, por parte de alunos 

e professores, de um escoamento através de diferentes geometrias, utilizando 

condições de entrada diferentes se mais prática e visual, tornando possível a 

ilustração de problemas resolvidos em sala de aula, em linha com 

metodologias de ensino mais recentes, com maior enfoque prático. O efeito 

de blocagem, por exemplo, pode ser facilmente ilustrado por um sistema 

simples com um bocal convergente. No último exemplo resolvido, da seção 

5.3, é evidente a relação de dominância da variação de área do bocal em 

relação à ocorrência de atrito sobre o escoamento. Esta conclusão é evidente 
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a partir da seleção de uma geometria com diâmetro inicalmente constante que 

passa a divergir. 

Conforme mencionado ao longo do trabalho, o modelo apresenta 

limitações sendo necessária a introdução da posição da onda de choque no 

bocal e de um maior detalhamento sobre a troca de calor como condição de 

contorno, por exemplo. Para casos complexos da industria aeroespacial e 

bélica, por exemplo, no qual o estudo de escoamentos compressíveis ganha 

importância softwares de CFD conseguem resolver problemas com maior 

complexidade. Historicamente, entretanto, este modelo teve aplicações com 

bons resultados na década de 80 na simulação de vedações de filmes de 

gases pela NASA, conforme ilustrado no trabalho de Zuk (1974). 
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