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Resumo

Este projeto analisa 0 escoamento unidimensional de fluidos compressiveis
tanto para situacdes subsodnicas quanto para supersonicas. O projeto aborda
a modelagem de um escoamento sob a influéncia de diferentes fatores, como
a variagcdo de area, a presenca de atrito e troca de calor. Apos a obtencédo de
um modelo matematico para o escoamento, o projeto realiza simula¢cées com
0 uso de softwares de simulacfes numéricas para diferentes casos e valida
este modelo realizando comparagbes com resultados consagrados, por

exemplo, os resultados obtidos por Fanno e Rayleigh.

Palavras-chave: Escoamento. Compressivel. Generalizado. Numérico

Simulagéo.



Abstract
This project analyses the quasi-one-dimensional flow both for subsonic as
supersonic situations. The project approaches the modeling of a flow under
the influence of multiple factors, such as the variation of the cross section, the
presence of friction and exchange of heat. After obtaining a mathematical
model for the flow, the project simulates, with the support a numerical
computing software, different situations and validates the model making a
comparison between the results obtained, and renowned results as the ones

obtained by Fanno and Rayleigh.

Keywords: Flow. Compressible. Generalized. Numerical. Simulation.
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Lista de abreviaturas e siglas

Area

Velocidade do som

Diametro

Calor especifico a pressao constante
Calor especifico a volume constante
Fator de atrito

Forca de arrasto

Entalpia

Funcao impulso

Fluxo de massa

Numero de Mach

Pressao

Taxa de transferéncia de calor por unidade de massa

Taxa de transferéncia de calor
Constante do géas considerado
Numero de Reynolds

Entropia

Temperatura absoluta

Time

Velocidade

Velocidade do fluido injetado
Taxa de trabalho realizado por unidade de passa
Taxa de trabalho realizado
Razao entre calores especificos

Viscosidade
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Densidade

Estado de estagnacao

Estado aonde M=1

Gas injetado

Subscrito referente a evaporacéo de liquido
Constante universal dos gases perfeitos
Massa molecular

Diametro hidraulico
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1. INTRODUCAO

1.10 ESCOAMENTO GENERALIZADO DE FLUIDOS COMPRESSIVEIS

Em uma analise de um escoamento de gases a variacdo da massa
contida em determinado volume é significativa e se faz fundamental para uma
analise com resultados robustos levar em conta a compressibilidade deste
fluido. Ao longo de um escoamento um gradiente de presséo € associado, por
exemplo, ao perfil de velocidades deste fluxo. Este gradiente de presséao
incorre em diferencas na densidade do fluido, e a importancia destas
variagbes e gradientes cresce atrelada a compressibilidade do fluido,
significativa em estudos que envolvam gases. Estas variacdes, por sua vez,
terdo consequéncias diretas na energia cinética do fluido e, portanto, em sua
temperatura. Com o aumento das velocidades do escoamento, principalmente
para velocidades proximas ao numero de Mach 1, estes gradientes impdem
variacoes significativas as propriedades do escoamento e 0 comportamento
do fluido se distingue do observado no cotidiano e, portanto, da intuicdo
humana. Essa diferenca apresenta valores expressivos justamente devido a
compressibilidade do fluido, tornando relevante o estudo da dindmica dos
fluidos compressiveis.

Em cursos de graduacéo, a analise de escoamentos compressiveis €
realizada, em geral, levando-se em consideracdo casos particulares de
escoamentos e os resultados séo apresentados desta mesma forma, com os
possiveis efeitos que possam atuar sobre o fluido de maneira isolada. Zucrow
(1976) chama de “escoamentos simples” os que sdo apresentados de forma
separada. Para Zucrow (1976) analisam :

e Escoamentos isentropicos com variacéo de area;
e Escoamentos sob efeito de atrito simples;
e Escoamentos com adicao de calor.
Esta anélise, embora didatica, é falha em retratar o que de fato ocorre
em situacdes praticas, aonde um ou mais destes efeitos tém influéncia
simultanea no estado presente do fluido. O estudo dos estados, quando h&a

multiplos fatores envolvidos, ndo apresenta resultados diretos e requer uma



analise mais generalizada do problema, mesmo para gases perfeitos. O fato

de multiplos fatores atuarem simultaneamente no estado do fluido impde que

os resultados sejam obtidos através de rotinas numeéricas, e por este motivo

o Software Matlab® é utilizado neste trabalho para que obter valores

numericos para diferentes situacfes de entrada.

Conforme mencionado anteriormente, situacbes aonde a analise

através da abordagem de escoamento generalizado se mostra mais relevante

sdo situacdes em que a velocidade do fluido se apresenta proxima ao numero

de Mach igual a 1. Situacfes de engenharia que apresentam tal cenario séo,

conforme destacado por Oosthuisen(1997):

Design de aeronaves de alta velocidade;

AplicacOes aeroespaciais;

Turbinas a gas: nas laminas da turbina e nos bocais onde o fluxo
compressivel deve ser considerado;

Turbinas a vapor: novamente, nas laminas da turbina o fluxo deve ser
analisado como compressivel;

Valvulas de admissdo e escape devem ser tratados como
compressivel;

Linhas de transmisséo de gas natural: a compressibilidade do fluido é
importante;

Camaras de combustdo devido as altas temperaturas e velocidades

envolvidas.

Figura 1-1 Escoamento compressivel/quase-incompressivel ao redor de um aerofélio

NACAO0012 com angulo de ataque de 10 graus



1.2 OBJETIVOS DO PROJETO

Com este projeto almeja-se obter um programa que realize simulacdes
de escoamentos sob influéncia simultdnea de diferentes fatores. Espera-se
gue o programa seja versatil para diferentes entradas e situagfes, englobando
escoamentos supersonicos e subsdnicos. O modelo sera validado através da
verificacdo se os resultados representam com preciséo os resultados obtidos
por autores para os mencionados “escoamentos simples”. Espera-se
encontrar ensaios com altos valores do numero de Mach, de forma a validar

0 modelo para situacdes reais.



2. REVISAO DA LITERATURA
2.1 HIPOTESES ADOTADAS

Este estudo ird abordar o escoamento de gases, que Sdo mais
relevantes no que tange a andlise de escoamentos compressiveis. Como
hipoteses elementares para se obter 0 modelo seré considerado que:

e O fluido sera tratado como um meio continuo. Isto € relevante para que
o movimento individual das moléculas ndo impacte diretamente o
restante do fluido;

e Na&o ocorrem rea¢fes quimicas. Isso é importante para a composi¢ao
do gas permanecer constante ao longo do escoamento e ndo ocorrer
liberacdo de energia interna. Este caso € relevante, por exemplo, para
a andlise da propulsdo de um foguete, aonde ocorrem reacdes de
combustéo que sdo fundamentais para a analise;

e O gas sera tratado como gas perfeito e, portanto, obedece a equacao

de estado de gases perfeitos:
P=Rr=3X71 1)
p w

Além disso, o calor especifico a pressdo constante e a volume
constante permanecem constantes e, portanto, a razao entre eles, k, também

é constante.

k=P (2)
Cv

e Efeitos gravitacionais sobre o fluido podem ser desprezados. Para
gases esta hipétese retrata bem casos reais, uma vez que a ordem de
grandeza da massa de gases €, normalmente, baixa e a energia
cinética do fluido é significativamente maior do que a energia potencial,

e Efeitos magnéticos e elétricos sao desprezados. Estes efeitos séo
relevantes quando o fluido conduz eletricidade e estd exposto a um
campo elétrico, 0 que ndo é o caso;

¢ Os efeitos da viscosidade sao desprezados.



2.2 CONCEITOS IMPORTANTES

Alguns conceitos sao fundamentais para a obtencdo das equacdes de
estado do sistema e serdo usados de forma extensiva na descricdo de um
escoamento compressivel generalizado. E importante que se entenda as

consideracdes acerca destes conceitos.
2.2.1 Velocidade do som

A velocidade na qual uma perturbac&o no meio se propaga € chamada
de velocidade da onda. Esta velocidade depende do tipo do meio e também
do estado termodindmico deste. O tipo do meio é relevante uma vez que a
velocidade do som no meio é inversamente proporcional a compressibilidade

do meio.
dap 3
a® = (_ap)s = kRT ®)

Na forma diferencial, a equacao 3 fica na forma:
da 1 dk dT dW 4

e 2% T W
2.2.2 O numero de Mach

O numero de Mach é definido pela razdo entre a velocidade de
escoamento do fluido e a velocidade sdnica do mesmo. Desta definicdo e da
equacao (3), tem-se:

M? = Z—z = VkRT ®)
Esta equacéao, escrita na forma diferencial fica:

dM? _dv? dw dk dT (6)

MZ_V+W k T




2.3 ESTADO DE ESTAGNACAO

Conforme descreve Zucker (2002) o estado de estagnacao descreve
um estado hipotético em que seriam obtidas as propriedades do fluido a partir
da referéncia do fluido, ao estado estatico do fluido. Ou seja, o estado
termodinamico que seria obtido se 0 escoamento fosse levado a potencial e
velocidade nulos sem adic&o de calor e sem perdas. Ou seja, 0 processo de
estagnacdo é isentrdpico.

p.V #0,z +0

Duto de escoamento como
volume de controle

Para gases, o estado de estagnacéo, possui entalpia de:

V2 7

Sistema Fisico

(D Procezzo de @
Estagnagio
‘ Wy g2

Plot do Estado

|
‘l*\\ Termodinimico

| Proceszo Estdtico

(]

Figura 2-1 Comparacao entre estados de estagnacao de dois pontos aleatérios do
escoamento, Zucker(2002)

E importante salientar que o estado de referéncia € um estado
hipotético e pode nao existir ao longo do escoamento. As equacgdes para se
obter a pressao, a densidade, a temperatura e o nimero de Mach a partir de

um determinado estado, sao:

Po_ o k=1 ok ®
p—[1+ > M=]k-1



Po _ k-1 T 9)
p—[1+ > M~*]k-1
Ty k — (20)

2= 1+ ——M?
7=t

2.3.1 O estado * de referéncia, o estado critico

Analogamente ao estado de estagnacdo, as condicbes do estado
critico seriam obtidas caso o escoamento fosse levado isentropicamente até
que o numero de Mach atingisse 1.

As equacdes para se obter a pressao, a densidade, a temperatura a

partir do numero de Mach séo:

T* 2 k-1 (11)
I N B— V) {7/

e e M

p* 2 k=1 . k (12)
o4 - k—

R T L

L e Y = (13)
p k+1 k+1

2.4 EQUACOES GOVERNANTES DO ESCOAMENTO

O sistema sera analisado a partir de relacbes termodinamicas
fundamentais que serdo utilizadas para obter um sistema de equacdes
diferenciais aplicaveis a sistemas que seguem as hipéteses simplificadoras

mencionadas nos topicos anteriores.

2.4.1 Volume de controle analisado

O volume de controle utilizado na analise do escoamento generalizado
deve representar as possiveis alteracdes de propriedades do sistema entre
um estado e o estado diferencial subsequente. O volume de controle segue o
volume diferencial descrito por Shapiro (1956) e que representa:

i. Variagdo de area,;
ii.  Atrito com a parede do conduto;



VI.

Arrasto de corpos internos;

Mudanca de fase de componentes do sistema;

Mistura de gases injetados no sistema;

Mudancas no peso molecular e no calor especifico do gas decorrente
de possiveis reacfes quimicas, evaporacgao, injecédo de gases;

Figura 2-2 Volume de controle para escoamento generalizado

Com este volume de controle é possivel obter para cada estado os

incrementos: A+ dA, P+dP,p+dp, T+dT, M+ dM, h+dh, s+ ds. Este

volume de controle retrata os principais fatores externos que podem atuar num

volume de controle de um escoamento unidimensional. Entretanto, sera

desconsiderada desta analise mudancas de fase dos componentes do

sistema e mudangcas no peso molecular e no calor especifico do gas

decorrente de possiveis reacdes quimicas, evaporacao, injecao de gases.



2.4.2 Equacao de estado para gases perfeitos

Seguindo a hipotese adotada de que o sistema € composto por gases
perfeitos, a equacgao que relaciona a pressao, a densidade e a temperatura é:
P = p * R+T (14)

Na forma diferencial, a equagéo 14 fica:
dp _dpo dT dw (15)

p 0 T w
2.4.3 Equacéao da Continuidade

O fluxo de massa € uma variavel de interesse do sistema. Esta analise
considera somente a participacao de gases no sistema. Qualquer escoamento
de liquido no sistema sera desconsiderado na analise do volume de controle.

O fluxo de massa pode ser expresso pela equacao 15:

m = pAV (16)
Que na forma diferencial fica:
dm _dp dA dV (17)

m p * A + %4

Lembrando que o fluxo de massa é referente ao fluxo de gas. No caso
de particulas que evaporam ao longo do escoamento, esta adicdo de massa
ao escoamento pode ser representada por dm,,, € assim, a variacdo da
massa em uma sec¢ao do escoamento pode ser representada por:

dm = dmgy + dm,, (18)

Oosthuizen (1994) sugere adotar M? ao longo da deducdo das
equacdes do escoamento generalizado por retirar a raiz do quociente da
formula com que se obtém o numero de Mach. Da definicdo do numero de
Mach, se obtém:

vz 2 (29)

" a2 kRT
De maneira analoga, para o estado diferencial subsequente ao instante

2

inicial;



10

_(V+av)y?  (V+dv)? (20)
" (a+da)? kR(T +dT)

Rearranjando as equacbes 19 e 20, multiplicando os termos, e

(M + dM)?

desprezando termos de segunda ordem, a seguinte equacéao é obtida:

dM? _2dV dT (21)
M2 Y T

2.4.4 Conservacgédo da energia

Com as hipéteses adotadas, a variacdo da energia decorre de mudancas
na energia potencial do sistema. A evaporacdo de componentes do sistema
sera desconsiderada a partir deste ponto da andlise. Para o volume de
controle da figura 2-3 a variagao da energia entre os estados, x e x + dx, pode
ser escrito com a primeira lei da termodinamica, na forma da equacéo (22),
aonde o subscrito i remete a injecdo de gas:

2 2
m(dq — dwg) = [m (h + %) — dm <hi + %) (22)

_ . V +dv?
+ (m+dm)|h+dh +——

Dividindo a equacéo por m rearranjando as equacdes e denotando:

2 2
dq — dw, = l(h+dh)+%—<h+%>l

_d_'m<h_hi+w>

(23)

m 2
Se T, e T, +dT, sdo a temperatura de estagnacdo na entrada do
volume de controle e na saida dele, respectivamente, entéo, pela definicdo de

temperatura de estagnacéao:

V2 (24)
ho —_ h - 7

E analogamente:
(V + dV)? (25)

ho +dho = h + dh —~——
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Para um gas perfeito, dh, = c,dT,, e, portanto, se obtém uma
expressdo mais simplificada para a energia do problema com:

T, 1 dii WV = V)2 (26)
Ty - 0T, {dq —dws ———[(h—h) + T]}

Lembrando que a temperatura de estagnacao provém da relacédo entre
a temperatura e o numero de Mach do estado de escoamento através da

relacéo:
k—1
dTy _dT (T)MZ dM?
= — 2 (27)
T, T 1Jr(k21)M2 M

2.4.5 Conservacdo da quantidade de movimento

A forca liquida atuando sobre o fluido e, consequentemente, sobre o
volume de controle € igual ao aumento da quantidade de movimento do
escoamento que passa através do volume de controle. Oosthuizen (1994)
denota a variacdo da quantidade de movimento do sistema

esquematicamente por:

Forca liquida Forca Forca Componente
da pressdo em liqguida da liquida da da forca de
1 - | pressao em | + | pressdo na | - | cisalhamento | -
2 superficie liquido na
inclinada direcéo do
escoamento
Forca de Fluxo de Fluxo de Fluxo de
Arrasto Liquido | = | momento | - | momento | - momento
em 2 em1 injetado

A equacéo para o volume de controle, considerando que o fluido
injetado tem a mesma presséo do escoamento, temos:

PA— (P +dP)(A+dA) + (P)dA — dFp — 1,A,, = (28)

(m+dm)(V +dV) — mV — dmV;cosaq;
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Sera tomado como hipétese que o angulo decorrente da variacdo da
area é pequeno, fazendo que o ultimo termo da equacao (28) seja anulado.
F; representa todas as forcas de arrasto na direcdo do escoamento
unidimensional. O termo dmV;cosa; denota a injecdo de massa no
sistema, dm, com velocidade V; e angulo a; em relacdo a direcdo do
escoamento.

Com o fator de atrito de Fanno para calcular a tenséo de cisalhamento,
representada por t,,, do escoamento com a parede decorrente do atrito, sendo
que f = f(Rep, 7). :

T
f= [7""2 (29)

Dividindo a equagéo (25) por m, utilizando a definicdo de r; dada pela

equacao (27) e relembrando a relacdo do numero de Mach dada pela equacéo

(28), chega-se na equacao simplificada (29) obtida por Oosthuizen (1994).

V; 30
T = Vlcosqbl- (30)
2 _V2_V?p (31)
a? kP
dP kM? (fP, 2dF, dm ,dv , dm (32)
Tt (At gy~ 2y ) KM+ M= 0

Outro conceito importante € a definicdo de diametro hidraulico, pela

equacao (30):

4A
D, = = (33)
Ry
A equacéo (29) entéo fica, conforme em Hodge(1995):
dP N kM? (4 dxd N 2dFp 5 dm) kM2 dav N (34)
p P M ez iy, v
dm
kMz _— = 0
m

Shapiro (1956) introduz ainda o titulo de escoamento de forma a

diferenciar o fluxo de gas do fluxo de liquido possivelmente escoando.

2 (35)
Vg = 7
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v (36)
YL = v

dm dm dm, (37)
1—y)—=(1-v,)—2+ (1 -y )—=
A=-y—=1-y)—=+T-y)—
A equacdo que Shapiro (1956) obtém, por fim, é:
dp N kM? (4 dx N 2dF, ) dm> kM dv N
Pt Y, Yeemea T i v (38)

dm
k(1—y)M2—=0
1-y) s

De inicio, ndo serd considerado a variacdo de liquido para gas e,
portanto, a equacdo governante do equilibrio de momentos do sistema € a
equacdo 31. A mesma equacao € apresentada por Oosthuizen (1994) com a

equivaléncia:
4fdx _ fPdx (39)
D, A

2.4.6 Funcao impulso

A funcao impulso é definida por:
I = PA+mV = PA(a + kM?) (40)
Esta funcdo é importante para sistemas propulsores. Conforme ressalta
Shapiro (1956), um incremento no valor desta fungéo representa um aumento
na forca total exercida pelo escoamento nas paredes internas de um duto no
sentido oposto ao escoamento. Na forma diferencial, fica:

dI_dA+dP+ kM?  dM? (41)
I A P 1+kM?2 M2

2.4.7 Entropia (Segunda Lei da Termodinamica)
Através da aplicacdo da segunda lei da termodinamica, a variagdo da

entropia através do volume de controle para um gas perfeito num processo

sem reacoes quimicas, é dada por:
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ds_dr _(k=1), (42)

c, T k

No caso de um fluido que evapora durante escoamento:

dm, (43)

dmig,
dStotqr = ds + (s — sg) — +(s—s;) —

2.4.8 Pressao de estagnacéao

A pressdo se relaciona com a pressao de estagnacdo através da

relacéo:
k
k—1 N\FT (44)
Py=P (1 + —MZ)
2
Para o estado subsequente em dx, é obtido, portanto:
k
k—1 = (45)
Py + dPy = (P + dP) [1 +T(M2 + dM?)
Dividindo a equacéo 45 pela equacao 44:
k_ 46
(k — 1)dMm? |k-1 (46)
P, + dP, <1+dP) T
0T 7o _ el - .
P, P 1+ (k 21)M
A equacdao (46) em uma primeira ordem de precisao, fornece:
kM? (47)
dPO _ dP 2 dMZ

+ _ 2 2
pp P (k 21)M M
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3. EQUACIONAMENTO DO SISTEMA

3.1 PRINCIPAIS EQUACOES E INCOGNITAS

Recapitulando as principais equacdes obtidas nas se¢fes anteriores
gue definirdo o sistema e permitirdo, através da analise das relacfes entre as
incognitas e relagdes constituintes, simular o sistema dada uma entrada e

condi¢cBes de contorno. As principais equacodes obtidas sao:

dp _dp N dT dw (48)
p B p T W
dM? _2dV  dT (49)
M2V T
dm _dp dA dV (50)
m p AV
dP+kM2 (4 dxd N 2dF, ) dm)+kM2 dV+
P2 \Yp, "t ipma i v (51)
drm
kMz—, = 0
m

dl _dA N dP N kM?  dM? (52)
I A P 1+kM?2 M2

k—1
dTy _dT %MZ dM?
- = = 2 (53)
T, T 1+(k21)M2M
ds _dT (k—1)dP (54)
c, T k P

kM? (55)

dP, dP N > dM?
D> ~ _ 2 2
Po P G DM M

As incognitas, portanto, que descrevem 0 escoamento quase
unidimensional generalizado e resolvem as 8 equacdes anteriores sédo 12 e

sSao:
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Tabela 1 Variaveis do escoamento generalizado

dP dT dp
P T P
dAM?2 av dA
Mz 2 A
dm dl T,
o T Ty,
ds dP, 4fdx dFp 2r;dm
cp P, D, T 2PMZA "

7

O sistema €, portanto, de ordem 8, e possui 12 incOgnitas. Para
equalizar o numero de incégnitas com o numero de equacgdes serdo definidas
4 variaveis chave e consideradas como entradas do sistema e previamente

conhecidas em fungéo da variavel independente x:
dA p ~ . .
o Que é funcdo da geometria do conduto analisado e geralmente a
area é definita por uma funcéo A(x);

o %: Em grande parte dos problemas T, pode ser expresso em funcao

0

de x, muitas vezes através de um polinémio de segunda ordem e esta

relacionada com uma troca de calor do escoamento;
dan p p .~ .~ ;-
o ?m Também € uma condicdo de adicdo de massa caracteristica da

montagem do sistema analisado, e muitas vezes € nulo.

O ultimo termo da tabela pode ser divido no termo que define o atrito

4fd . . dF
9% ejou o termo que define o arrasto do sistema 2 —2—,
Dy, kPMZ2A

dF, depende da

geometria de determinado corpo do sistema. O fator de atrito f muitas vezes
€ constante ou depende da rugosidade do conduto e pode ser descrito como
funcéo da variavel independente x. O didmetro hidraulico do escoamento tem
uma funcéo correlata a A(x). Os termos restantes podem ser determinados
pelas equacdes do sistema e sdo denominados por Hodge (1995) como
propriedades do escoamento. E evidente que as variaveis conhecidas do
sistema sdo constantes ou em funcéo da variavel x, o que faz sentido em uma
analise de um escoamento unidimensional que varia justamente nesta

direcao.
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3.2 SISTEMA NA FORMA MATRICIAL

As equacdes de 48 a 55 podem ser colocadas na forma da matriz 8x8

56, com as variaveis A, B, C, D, E para diminuir as dimensdes da matriz:

1 -1 -1 0 0 00 Ogp/pq [ O
0 1 0 1 =2 00 O dar/rT 0
0 0 1 0 1 0 0 0| gp/p dm dA
1 0 0 0 kM?2 0 0 O dM? M2 m A (56)
-1 0 0 —-A 0 1 0 0 i |- D+E
0 1 0 -B 0 0 0 O0f - dA/A
1 / dT, /T,
k=z -1 0 0 0 0 1 0l ds/cp 0
1 0 0 —-¢ 0 o o uldR/Pl [ o
Aonde:
4= kM? (57)
14 kM?
(k — 1)M? (58)
2
B = >
1+(k—21)M
(3)
¢ = 2 (59)
h (k — 1)M?
=
_ kM? (4fdx+2 dFp ) (60)
2 \ Dy kPM?2A
(61)

E=—kM?(1— r-)d—m
)

Para se obter as equacdes em funcéo das 8 propriedades do sistema,
basta inverter a equacdo 56 que apdés um trabalho algébrico fornece, em

funcao dos termos F;;:

[ dP/P 1 [Fp1 Fpy Fps Fpy 0 Fpg 0 07] 0
dr/T | |Fry Frz Frg Fry 0 Frg 0 0| 0
dp/p Foo Fpp Fp Fu 0 Fe 0 0f|22_%22
dM?*/M?| _|Fus Fuz Fuz Fus O Fyo 0 off™ A} (62
av/v Fpy Fp» Fyz Fpa 0 Fyg 0 O dA/A
dl /1 Fn Fp Fa Fy 10 0 0l nln
ds/cp 0 F, 0 Fy, 0 Fg 0 1 ‘6 0
L dPy/Py ] L0 Fp 0 1 0 F 0 ol




Os termos F;;
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sdo denominados por Oosthuizen (1994) como

“Coeficientes de influéncia” e estdo apresentados na tabela a seguir:

Tabela 2 Coeficientes de influéncia

p kM? _ k(k—1)M*
PL™ M2 -1 P27 2M2-1)
kM? 1+ (k—1)M?
FP3:—M2_1 P4 = — M2 — 1
k—1)M? k — 1)M?
kw2 [1 4 = 1M F“:(MZ—)1
(k —1)M?*(kM? - 1) (k — 1)M?
Frz == 2(M%Z— 1) L V|
(k — 1)M? (k —1)M?
Fro == =7 (kM2 — 1) [1 + —"—
1 (k — 1)M?
F, = __ =R
P M2 -1 Fp 2(M? - 1)
M? 1
Fp3:ﬁ FP4__m
_ 2 - _ 2
14 G= 1 4 G DI
Foo =31 P = =273
_ 2 - _ 2
Gem? — 1|1+ =DM 4+ M
FM2= M2—1 FM3=_2- M2_1
— 2 _ 2
[1+—(k Zl)M ] (kM2+1)[1+—(k Zl)M ]
Fyg = 2 M2 —1 Fye = — M2 —1
1 (k — 1)M?
Fpy= ———o —
i Mz -1 Fvz 2(M?2 - 1)
1 1
Frs=—3m—7 Fra=5m—7
_ 2 2
NG 21)M b = kM
Fye = — I 1 kM? + 1
. kM? . kM?
27 kM2 +1 B kM2 +1
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1 k — 1)M?
e =z +1 =~ 2)

k—1 k—1
Fop = ——— Fog = 1+——M?

kM2 kM2
Fop = 2 Foe = — 2

A matriz 62 representa as oito equacdes diferenciais para cada uma
das variaveis desconhecidas do sistema, expressos em fungéo dos potenciais
ou do numero de Mach. Como esta andlise enfatiza um escoamento
unidimensional, a Unica variavel independente do sistema é x e, portanto,

todos os diferenciais podem ser expressos em funcéo desta variavel. Assim,

. . . dM? _ dM(x)? .
o diferencial do numero de Mach se apresenta como —€ % e a partir da

matriz 62 pode ser obtido através de uma equacgao, no caso:

1 dM? p 1dA+(kM2+1)‘I—’1dT0

M? dx = “M?2-1Adx 1-M2?2 T,dx
kM?*y (4f+ 2 dFD) (63)
1—M2\D, kPAM? dx

(= +2(1+kM2)‘I’ 1dm
i 1-M?2 ) dx

Definindo ¥ =1 +%M2, termo que aparece de forma recorrente nas

expressdes deduzidas acima.
Com estas equacdes expressas em fungdo da variavel independente x, se
conhecido o comportamento das variaveis chave em funcéo de x, é possivel

integrar a equacao 63 e obter o nimero de Mach em funcéo de x.
3.3 EFEITOS DE BLOCAGEM NO SISTEMA

Um dos principais efeitos que este trabalho visa analisar € operacéo de
escoamentos com valores do nimero de Mach proximos a um. A reducéo da
area, o aumento do atrito ou do calor adicionado ao escoamento podem gerar
efeitos opostos dependendo do estado presente do escoamento. Em

escoamentos subsoénicos tais ajustes podem gerar uma reducdo no fluxo de
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massa, enquanto em escoamentos supersénicos podem surgir choques ou
mudancas abruptas dos parametros de escoamento definidos anteriormente.
Com o auxilio do parametro definido previamente, ¥, e considerando
que a injecdo de ar no sistema sera realizada na mesma velocidade do
escoamento (r; = 0), a equacdo 63 que exprime o dM?/M? em funcéo das
derivadas parciais de x, fica:
1 dM? ¥ 1dA (kM?+1)¥ 1dT,
M? dx M? —1Adx 1-M? T,dx
2
+ 1= o, * A ax) o
<2(1 + kMZ)lI'> 1 dm
1— M?

m dx

A variavel dependente para esta equacdo é M e a variavel
independente x. Posteriormente o sistema sera resolvido com a integracéo de
equacdes similares a equacao 64 para cada uma das variaveis dependentes
do escoamento. Por hora, a equacdo acima sera util para a analise desejada
da operacédo préxima ou no ponto de blocagem. Ja é possivel observar que
guando M=1 o denominador de alguns termos da funcao 65 vai a zero, 0 que,
para um integrador numérico pode ser problematico na analise do sistema. A

equacao 65 pode ser expressa por:

1 dM? WG(x, k,M) (65)
MZ dx | 1- M2
Onde:

dF,

GokMy =22 p iz (g B )y gyl ]
N = T A D, ' “kPM?A dx 1, (66)

1dm
+2(1+ kM?)——
m dx

Com a funcdo G(x,k,M) agora € possivel observar que para um
escoamento subsoénico, um valor positivo da fungédo G(x, k, M) incorre num
incremento no nimero de Mach, enquanto num escoamento supersonico, o
oposto € verdadeiro. O sinal de G(x,k,M) € controlado pela soma dos

produtos de diferentes coeficientes de influéncia e admensionais.
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A transicdo entre um nimero de Mach positivo e um nimero de Mach
negativo passa por um ponto delicado, principalmente em uma solucéo
numérica e deve ser levado em consideracdo. A localizacdo do ponto de
blocagem de um bocal é muitas vezes desconhecida, a exce¢do de um fluxo
com uma mudanca de area simples, isto €, sem atrito ou calor. Esta
localizacao, por sua vez, depende de T,(x), A(x) e f(x), varidveis conhecidas

do escoamento.
3.4 ONDAS DE CHOQUE

Outro conceito que deve ser levado em consideracdo no estudo de um
escoamento compressivel sdo as ondas de choque. Uma onda de choque é
uma onda que percorre 0 escoamento aonde a velocidade, a presséao e a
temperatura mudam em quantidades finitas.

Uma onda de choque tem comprimento desprezivel frente as dimensdes
de um escoamento usual e a grandeza chave para sua descricdo sera a
posicdo em que ocorre ao longo do escoamento, a partir da entrada do fluido.

Para um géas calorificamente perfeito, a temperatura de estagnacéo
permanece constante através da onda de choque normal. Entre um ponto 1
gue precede imediatamente a onda de choque e um ponto 2 imediatamente
apos a onda de choque, Hodge (1995) obtém as seguintes relacdes:

- MZ(k—1) +2 (67)
27 2kM? — (k—1)

P, 2kM12 k—1 (68)
P, k+1 k+1

1 2k 69

( duz) (g mz - 1) )

M2 ((ka )_l_k;l)

pr Vi (k+ DM (70)
b1V, (k— DMZ+2
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Estas relacdes sao suficientes para descrever a transicao do estado do
fluido que precede a onda de choque para o estado logo apdés a onda e
possibilita simulagdes mais robustas, abordando casos aonde ocorrem ondas

de choque ao longo do escoamento.
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4. ROTINAS DE SIMULACAO

A légica da simulacdo para um escoamento unidimensional qualquer
provém das relacdes entre variaveis independentes do sistema e variaveis
correlacionadas a elas através das relacfes descritas na matriz 2.

A equacédo fundamental para simular um escoamento unidimensional ao
longo de um eixo x é a equacgao que descreve o comportamento do numero
de Mach ao longo desta dimenséo. As demais propriedades do sistema estéo,
em sua maioria, correlacionadas a este valor. Conforme o que foi apresentado
anteriormente, esta equagao possui valores criticos para numeros de Mach
proximos a um, devido a quocientes que apresentam o valor 1 — M2, Nas
proximas secdes sera apresentado primeiramente uma rotina de simulagéo
para casos gque nao envolvam a blocagem do escoamento, e a seguir a rotina
gue a partir do caso mais simples introduz os conceitos necessarios a

simulacado deste sistema.

41SIMULACAO DE UM ESCOAMENTO GENERALIZADO SEM
BLOCAGEM

No caso aonde ndo ha nenhum ponto com velocidade supersénica no
escoamento, e, portanto, a equacéo 64 ndo apresenta nenhuma singularidade
e pode ser integrada diretamente a partir das varidveis independentes
apresentadas em funcéo de x através de um método integrativo qualquer. O

método de Runge-Kutta de quarta ordem é eficaz para tal objetivo a partir de

aM . ~ ~ . . ~
— = f(x, k, M). Dada uma localizagéo x, a solucao para a proxima localizacao

dx

x + Ax, distante um passo A da localizacéo inicial pode ser dada por:
M(x + Ax) = M(x) +A?x(k1 + 2k, + 2k5 + ky)
ky = f(x,k, M(x))
ks =f(x+A2—x,k,M(x) +A2—xk1) (71)

Ax Ax
ky = f(x+7,k,M(x) +7k2)
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ky, = f(x + Ax, k, M(x) + Axks)

A partir dos perfis dos potenciais-chave ao longo de x, € possivel, portanto,
descrever o comportamento do niumero de Mach. As demais variaveis podem
ser obtidas em seguida através da integracdo das equactes diferenciais
presentes na tabela 2. De maneira mais direta, é possivel obter, a partir do
valor obtido para M e com uso de rela¢gBes algébricas, razdes entre as demais
variaveis de um ponto x (1) para o proximo x + Ax (2).

Para obter a razdo entre T; e T,, parte-se da formula da temperatura de

estagnacéo Ty:

k—1 72
T0=T(1+—2 M?) (72)
Realizando a razdo entre T, e T,, obtém-se:
T -
r (e L)
2 _ 10 — (73)
R By U
O fluxo de massa através de uma secao pode ser escrito como:
P k (74)
n = pAV = — AMVkRT = PAM |—
= pAV = prAMVk RT
Realizando novamente a razéo entre os estados 1 e 2:
my PAM; [T (73)
m,  PyA;Mp [Ty
A equacéao 75 pode ser resolvida para P, e P, de forma a se obter:
P, tipAMy [T, (76)
Py iy AMy Ty

As razdes entre as areas e os fluxos de 1 e 2 sdo conhecidas dadas as
premissas utilizadas neste trabalho e, portanto, I’:—z pode ser obtido a partir do
1
resultado da equacgéao 73.

De maneira analoga, a razéo entre os valores do numero de Mach entre

as secOes 1 e 2, e levando em consideracdo que k e R sdo constantes ao
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longo do escoamento, uma vez que nao ocorrem reacdes quimicas e nem
outra subtancia é injetada no sistema, fornece que:
v, M |r, (77)
Vi M Ty
Novamente, o resultado desta equacéo € conhecido a partir da equacéo
73. A razdo entre a equacao de estado para os estados 1e 2 pode ser
retrabalhada de forma que se obtenha:
P2 _BTh (78)
pr PT,
A partir da relagéo entre pressdo e pressdo de estagnagdo descrita

abaixo, é possivel se obter também uma razdo para as pressdes de

estagnacéo.
k

P /T\FT (79)
7~ (%)

k_ 80
Py, P, <T02T1 >k_1 (80)
Py, Pi\To, T
A entropia pode ser calculada diretamente com:
As T, k-1 P.

Estas relagbes descritas nas linhas acima sdo conhecidas na literatura
como equacdes integrais, uma vez que possibilitam que a cada integracéo do
numero de Mach se obtenham as demais propriedades do escoamento para
este novo estado sem que haja a necessidade de se integrar uma a uma as
equacdes diferenciais da tabela 2. Por ordem de aplicagéo, estas equacodes

séo listadas aqui como:
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e (1+ 552 m)

L _ T
e 1+ %MZZ
P, m,AM; |T,
P, iy AM, |Ty
»_M; I (82)
v, M, |T,
Pz Pz T1
P1 P1 Tz
k
PO2

P, <T02T1 >m
Py, Py \Top, T,

e AV

Para que se obtenha uma solucdo € necessario, primeiramente
resolver numericamente a equacdo 83 através do método de integracdo
selecionado, para entdo prosseguir com o calculo das demais propriedades a
partir do resultado obtido.

Para se implementar o método de Runge-Kutta de quarta ordem, por

.. P ~ . aM
exemplo, os coeficientes do método serdo calculados a partir de — aonde:

M " ' 1 dA(x) (kM?2+1)1dT,
dx  1-M?2| A(x) dx 2 Ty dx
kMz( 4f .\ 2 dFD) (83)
2 \Dn(x) kPAM? dx
1 dn
+ (1 + kM) —— m(x)l
m(x) dx

Zucrow e Hoffman (1976) estabelecem um método pautado nas
equacles listadas em 82 para a resolucdo numeérica de um escoamento

generalizado. O processo de quatro etapas pode ser descrito como:
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1. Definir as condi¢des iniciais, usualmente o nimero de Mach, a
velocidade, a densidade, as pressdes e temperaturas do escoamento
e de estagnacédo. Desenvolver uma relacdo entre as variaveis
independentes e 0 eixo x;

2. Utilizar a equacéo 71 para integrar a equacéo 83 para um passo Ax
definido previamente;

3. Utilizar as equacdes de integracdo presentes em 82 para estabelecer
as propriedades no novo estado x + Ax;

4. Repetir os passos 2 e 3 até o alcance de x de interesse.

De forma a melhor ilustrar o procedimento 1 descrito acima, 0s potenciais-
chave foram descritos através de fun¢bes chave e a equacédo 83 foi reescrita
através dessas funcdes listadas abaixo:

1  dA(x)
i) = A(x) i dx
1 . dTy(x)

f2(0) = To(x)  dx (84)
f3(x) = D(x)

dFp
i) = 20

1 dm
fs(x) = E * E

Assim, a equacéao 83 pode ser reescrita conforme a equacao:

dM y (kM? + 1) (85)
T - M|+ ——— )
kM? [ 4f ,

4.2SIMULACAO DE UM ESCOAMENTO GENERALIZADO COM
BLOCAGEM
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Para simular um escoamento que passa por um ponto com velocidade
igual a velocidade do som, é necesséario estabelecer a localizacdo do ponto
aonde ocorre a singularidade das equac0es diferenciais do escoamento que
relacionam o nimero de Mach com as variaveis independentes. Para tanto,

vamos relembrar as equacoes:

1 dM? _WG(x, kM) (86)
Mz dx 11— M?
dF, 87
G(x, k, M) = dA2+kM2 4f+2 s +(1+kM2)dT01 0
M) = T A D, T “kPM?A dx T,
+2(1 + kM?) 1 dm
m dx
A equacdo (84) pode ser descrita como:

1— M?dM? (88)

W de YG6(x, k,M)

No ponto aonde M=1, G(x,k, M) = 0, uma vez que ¥ nao € igual a zero no
ponto de blocagem. O ponto x aonde ocorre a blocagem do escoamento &€,
portanto, raiz da equacdo 86. Hodge (1995) chama a atencéo para o fato de
que:

i E M) 0 (89)
M 1—MZ 0

. . ~ " am
Uma indeterminacdo matematica. O valor de - deve ser, portanto,

determinado com o auxilio da regra de L’'Hospital, através da qual se obtém:

ae (90)
LodM L MYGGok M) k+1( G
wordx Mot 2(1-M2) 4\ _,,dM
dx / y=1

dF P aG
Desprezando-se d—:, obtém-se para o termo -
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4 _ [—Zi(ld—A) + kM? — d (4f> +(1+ kM%—(lﬂ)
dx dx \A dx dx \Dy, T, dx
+2(1+kM2)—(1 dim
m dx 91)
[ZkM—M(ﬂ) + ZkMd—M(i@> (
Dy, dx \T, dx

+4kMdM 1dm
dx G m dx

Avaliando a equacédo 89 para o ponto aonde o niumero de Mach é igual a

dG d (1dA d (4f 1dT, (92)
dx [ de(Adx)+kdx<Dh>+(1 k)dx<T0 dx)
1dm
+2(1+ k)—(——
+(dM) [Zk( )+2k(1 dTO) P i
T, dx (m dx
Obtém se entdo, para a equacéo 88:
dM\* k+1 d (1dA 4f
(@, S aGE, ),
dx ) y=1 8 dx \Adx/py-1 dx \Dy,
+A+0) (1 dT")
x\To dx /,,_,
1d 93
+2(1+k)—(——m) l ©3
m dx
k+1<dM) [2k< >+2k(1dT0>
8 T, dx

1dm
e
m dx /1y=1

~ am a -
Esta equagéo fornece 2 valores para —, No ponto sonico. O valor

negativo corresponde ao trecho subsonico proximo ao ponto sénico, e em
contrapartida o valor positivo corresponde ao trecho supersénico préoximo a
este ponto.

A simulacdo de um escoamento com ponto sbnico, parte entdo da

determinacao da localizacao deste ponto a partir da equacao 92:



30

dF, 94
dA 2 L[ 4f T2 (94)
G(x, k, M)M=1 = __de‘F kM D_h+ Zm

dT, 1
2y20
+(1+kM )deO

M=1

dFp

+(1+k) dTo 1 0
dx T, B
M=1
. , L, . dM
Em seguida é necessario se obter os valores os valores —, hos arredores

do ponto sbnico, através da equacdo 91. Com estes valores conhecidos é
possivel avancar um passo antes e depois do ponto sénico, dando sequéncia
a simulacdo com o método apresentado na secao 4.1. Hodge (1995) sugere
gue a partir da localizacdo sonica do escoamento se obtenha primeiramente
os valores na entrada x=0.0, para entdo se integrar adiante e encontrar as

distribuicdes no numero de Mach e as demais propriedades.
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5. SIMULACOES PROPOSTAS

De forma a validar o equacionamento proposto na secéo anterior, seréo
realizadas, nesta secéo, simulacdes que permitam a visualizagdo da evolugéo
das propriedades do fluido ao longo de um escoamento sujeito a efeitos
combinados de atrito, calor, adicAo de massa e mudanca de éarea, por
exemplo.

A partir dos livros classicos de estudo da dindmica de fluidos
compressiveis, foram selecionados problemas com grau de dificuldade
incremental de forma a permitir uma implementacédo correta da metodologia
proposta neste trabalho e analise da influéncia dos diferentes efeitos que
atuam sobre um escoamento que se enquadre nas hipéteses simplificadoras
adotadas ao longo deste trabalho. Os primeiros problemas sao facilmente
implementados no Matlab® e a abordagem proposta pode ser utilizada em um
curso de dindmica de fluidos compressiveis apresentando o contetudo de

escoamento generalizado unidimensional de forma didatica.

5.1PROBLEMA 1. PROBLEMA 9.3 PROPOSTO POR ZUCROW E
HOFFMAN (1976)

O primeiro problema selecionado apresenta uma variagcdo de area
combinada com a atuacdo de atrito no escoamento, ocasionando perdas na

pressao de estagnacao do escoamento.

5.1.1 Enunciado

Ar entra em um difusor subsénico com um namero de Mach igual a 0,9. As
paredes do difusor apresentam inclinacdo igual a « = 7° e o raio de entrada é
igual ay = 0.25m. O ar apresenta k constante e iguala 1,4 e f = 0.01. O duto

apresenta comprimento de 1m.
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5.1.2 Hipoteses adotadas

Para a resolucao deste problema, sdo adotadas as mesmas hipéteses do
desenvolvimento das equacfes da se¢do 4. O escoamento € considerado em
regime permanente e plenamente desenvolvido. O ar é considerado um gas
perfeito, com k constante. A temperatura de estagnacdo € considerada
constante e ndo existem fontes externas de trabalho ao sistema a excec¢éo do

atrito.

5.1.3 Analise do Problema

Este escoamento € uma versao simplificada do equacionamento proposto
nas secoes anteriores, apresentando somente atrito e mudanca de area. Além
disso, ndo ha incremento a vazao massica do sistema.

O raio da secao apresenta a seguinte forma:

y(x) =y; +tan(a) * x (95)

Sendo y; = 0,25m e a = 7°. Desta forma, a area de secao se apresenta da

seguinte forma:

Area pela posicao x

. . . . .
0 02 04 08 0.8 1 12
x(m)

Figura 5-1 Area da sec&o transversal ao longo do duto
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O primeiro e o terceiro potenciais-chave podem entéo ser calculados e

os demais sdo nulos para este problema. Eles sdo, portanto, para este

problema:
69 = A(lx) " dfzch) =2y, T
A0 =1 e o
f:(x) = D(x) = 2y; + 2tana * x
fax) = dF;Ex) =0
fi) =+ =0

Todos os potenciais-chave foram calculados com éxito em relacdo a
variavel independente do escoamento unidimensional x e o calculo do numero
de Mach pode entédo ser realizado a partir da integracdo da equacédo (83)
através do meétodo de Runge-Kutta de quarta ordem apresentado
anteriormente. O numero de Mach obtido para este escoamento apresenta a
seguinte forma:

Numero de Mach pela posicao x

0.9

Numero de Mach

0.3

| !
0 02 04 06 08 1 12
x(m)

Figura 5-2 Numero de Mach ao longo do escoamento



34

5.1.4 Conclusoes

O comportamento do difusor subsonico foi representado pelo programa
com éxito, apresentando com sucesso a relagao inversamente proporcional
entre 0 aumento de area com a reducdo no numero de Mach. N&o foram
realizadas analises para as demais propriedades deste problema devido ao

seu caréater extremamente simplificado.

5.2 PROBLEMA 2: PROBLEMA 12.2 PROPOSTO POR OOSTHUIZEN E
CARSCALLEN (1994)

Este problema prop6e uma analise de um pequeno bocal repartida em 3
casos separados, possibilitando uma comparacdo de como 0 escoamento se
comporta quando submetido a diferentes efeitos. Os 3 diferentes cenarios
permitem observar a importancia do estudo de escoamentos generalizados.
A desconsideracdo de algum dos efeitos que atuam sobre o escoamento
impBe mudancas significativas aos resultados obtidos, que durante um
processo de dimensionamento de um bocal poderia incorrer em falhas e

prejuizos econébmicos.
5.2.1 Enunciado

Ar escoa através de um bocal axisimétrico entrando com um numero de
Mach M = 1,2, temperatura estatica de 400°C e presséao estatica de 30kPa. A
entrada do bocal possui didametro de 3cm e sua saida de 6cm. O
comprimento do bocal é de 9cm. A parede do bocal é paralela ao eixo de
escoamento em sua saida. O diametro do bocal varia conforme um polinbmio
de segunda ordem e apresenta o seguinte formato:

2 7
D(x) = 0,03 + 3%~ 3.704x2 (97)

Considerar os seguintes casos:

1. O escoamento é considerado adiabatico e sem atrito;
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2. O escoamento no bocal é considerado adiabatico e o fator de atrito
pode ser assumido como f = 0,005;

3. Atemperatura de estagnacao do escoamento decai linearmente em
150K e o fator de atrito pode novamente ser considerado como f =
0,005.

5.2.2 Analise do problema

Este problema possibilita a comparacao entre os 3 casos sob diferentes
influéncias de fatores externos. Todos 0s potenciais-chave podem ser
facilmente estabelecidos em relacéo a variavel independente x. Seguindo
0 polindbmio proposto no enunciado, o diametro do bocal apresenta o

seguinte formato:

Diametro pela posicao x
0.06 T T T T T

0.02 -

Diametro(m}
o

-0.02

001 0.02 003 004 005 006 007 008 009 01
x(m)

Figura 5-3 Formato do bocal analisado

Os potenciais-chave apresentam diferentes formas para os 3 casos. Os
potenciais que séo idénticos para 0s 3 casos sao:
1 dA(x) 2
A(x) dx D(x)

filkx) = (g — 7.408x)

fz(x) =D(x) = 0,03+ gx — 3.704x?
(98)
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dF,
fiio = 229 _ g

@ 1 dm 0
= — % —— =
fs(x m dx

A diferenca no fator de atrito considerado tera interacédo direta com o

potencial-chave f;. O potencial-chave f, tem o seguinte formato para os 3
casos:

Caso A: f,(x) =0

Caso B: f,(x) =0 (99)
AT,

Caso C: fz(x) = Toiniciat + Tx

Com os potenciais-chave representados para os 3 casos em relacdo a

variavel independente x, a rotina de simulacdo proposta neste trabalho pode
ser implementada com éxito novamente.

Os resultados obtidos sdo apresentados a seguir:
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Numero de Mach pela posicao x

1

0 0.01 002 003 0.04 005 006 007 0.08 009 0.1

x(m)

Figura 5-4 Numero de Mach para o

Problema 2

«10% Pressoes estaticas pela posicao x

Caso C
25(

Pressao(Pa)
o

05

0 L L L L L L L L L
0 0.01 0.02 003 0.04 005 006 007 0.08 009 0.1

x(m)

Figura 5-6 Press0es estéticas para o

problema 2

Tabela 3 Resultados do problema 2
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24

——Caso A
~——Caso B
Caso C

22r

Pressao(Pa)

S

08r

«10% Pressoes de Estagnagéo pela posicao x

0.6

700 ‘

0 0.01 002 0.03 0.04 005 006 007 008 009 0.1

x(m)

Figura 5-5 Pressfes de estagnacéo para o
problema 2

Temperatura estaticas pela posicao x

=——Caso A
——=Caso B
1 Caso C

600

o
=]
S

Temperatura(K)
=
[=3
]

@
=1
]

200 -

100

0 0.01 002 0.03 0.04 005 0086 007 008 009 0.1

x(m)

Figura 5-7 Temperaturas estaticas para o

probema 2

Inicio Caso A Caso B Caso C
Numero de Mach 1.20 2.97 2.82 4.14
Temperatura de estagnacao 867.0K 867.0K 867.0K 722.0K
Temperatura estatica 673.2K 313.3K 334.9K 163.0K
Pressdo estatica 30000.0 Pa 2067.5 Pa 2255.0Pa 1071.0 Pa
Pressdo de estagnacao 72749.0 Pa 72930.0 Pa 62951.0 Pa 195790.0 Pa
Velocidade de saida 624.1 m/s 1054.7 m/s 1033.9m/s 1059.7 m/s
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5.2.3 Analise dos Resultados

A complexidade incremental dos casos possibilitou comparar a influéncia
dos efeitos externos que atuam sobre o escoamento. No caso A, 0 aumento
da area no bocal supersonico incorreu em um aumento no nimero de Mach
simultdneo a uma reducdo na temperatura estatica e na pressao estatica,
conforme o esperado. A adicédo do atrito do escoamento com a parede dos
bocais entre os casos B e A, incorreu em uma queda no numero de Mach e
uma reducéo na pressdo de estagnacédo, decorrente da variagdo na entropia
do sistema e irreversibilidades associadas ao atrito, mesmo com a dimensao
reduzida do bocal. A troca de calor representada no Caso C incorre em
mudancgas ainda maiores em relagcdo ao observado no caso B. O niumero de
Mach obtido foi significativamente maior e a pressao de estagnhacdo aumentou

de maneira abrupta como pode ser observado na figura 5.5.

5.3 PROBLEMA 3: PROBLEMA 6.6 - HODGE (1995)

Seguindo a metodologia proposta de aumento incremental na
complexidade do problema estudado, este problema apresenta
simultaneamente incremento na vazdo massica, variacao na temperatura de
estagnacdo, mudanca de area e onda de choque. Este problema sera
estudado mais a fundo em relagéo aos casos anteriores que se apresentaram
como uma boa ferramenta didatica para o estudo de escoamentos

generalizados unidimensionais.

5.3.1 Enunciado

Ar entra num duto com numero de Mach de 2,0, pressdo de estagnacao
de 200kPa e temperatura de estagnacdo de 1000K. A geometria do duto tem
2 metros de comprimento e é composta por duas se¢fes geometricamente
distintas, cada uma com um metro de comprimento. A sec¢ao inicial possui

didmetro constante de 0,2m e a secao posterior possui um formato senoidal



39

com diametro inicial de 0,2m e diametro final de 0,4m. A temperatura de
estagnacéo varia linearmente de 1000K a 600K entre a entrada e a saida e o
fluxo de massa varia do mesmo modo, de tal forma que o fluxo de massa na
saida é 1,15 vezes maior do que na entrada. Uma onda de choque ocorre a
1,5 metros da entrada. O fator de atrito é constante ao longo do duto e igual a
0,005.

5.3.2 Hipoteses adotadas

Para a resolucédo deste problema, sdo adotadas as mesmas hipoteses do
desenvolvimento das equacfes da secdo 4. O escoamento é considerado em
regime permanente e plenamente desenvolvido. O ar é considerado um gas
perfeito, com k constante.

A variacdo da temperatura de estagnacdo e da vazdo de massa é

considerada linear ao longo do tudo.

5.3.3 Equacionamento do problema

a. Diametro do duto

O diametro do duto pode ser separado em duas fungdes, sendo elas:

I. 0<x<1
D(x) = Dy
(100)
. 1<x
Dy+Ds Dy—D 101
D(x) = 02 LA 02 fcos(n(x—Ll)) (101)

Onde L, = 1m, que equivale ao comprimento desta se¢ao. Graficamente, o

didmetro pode ser observado na o grafico:
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Diametro pela posicao x

04

03r

0.2

0.1

Diametro(m)

01

02

03 r

04

x(m)

Figura 5-8 Didametro do duto pela posicéo

b. Area das secfes

De maneira analoga, a area do duto pode ser dividida em duas secdes,
cada uma com uma funcdo para o diametro distinta e sendo a area: A(x) =

. D(x)?
4

A area do escoamento, fica:
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Area pela posicao x
0.13 T T

——Area

0121
0.11r

0.1

0.06

0.04

0.03

x(m)

Figura 5-9 Area do duto ao longo do escoamento

c. Temperatura de estagnacédo

Como a variacédo da temperatura de estagnacdo ao longo do duto pode
ser aproximada por uma funcao linear, ela pode ser escrita como:

Tor — Ty;
TO(X) = TOi + —OF L o X (102)

Sendo os indices i e F, para inicio e final, respectivamente.

d. Fluxo de massa

O valor absoluto da vazdo massica ndo € essencial para a resolucéo do
problema, entretanto a razéo entre valores das vazf6es massicas ao longo do
duto o é. E conhecido que a vazio méassica de saida é 1,15x maior do que a
inicial. Para efeito de equacionamento vazao massica inicial sera considerada
como 1 e afinal como 1,15. Como a variacao do fluxo de massa ao longo do
duto pode ser aproximada por uma funcéo linear, ela pode ser escrita como:

Mp — 1y (103)

. —op g T
m(x) =m; X

Sendo os indices i e F, para inicio e final, respectivamente.

Graficamente, esta distribuicéo é representada por:
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Razao de vazao pela posicao x
1.16 T T T T

——Vazao de massa/Vazao de massa inicial‘

114 1

112

1.08 |

Razdo de vazao de massa

0 0.5 1 1.5 2 25
x(m)

Figura 5-10 Raz&o da vaz&o méssica ao longo de x

Estas equacdes e suas derivadas sao suficientes para equacionar os
potenciais independentes e prosseguir com 0 método proposto na secao

anterior. Para este escoamento, em particular, sdo obtidos os seguintes

potenciais:
. 0<x<1
1  dA(x)
filx) = A(x) * dx =
fa.(.x) =D(x) =Dy (104)
. 1<x
foy o L) _ 2eme PP sen(ats 1)

k =
Dy+Ds Dy—D
Alx) - dx 4 > L4 =0 > fcos(n(x—Ll))

sen(n(x — 1))
0.3 — 0.1cos(m(x — 1))

= 0.2 * 17 *

fz(x) =D(x) = @ + @cos(n(x — Ll))=0.3 — 0.1cos(n(x — 1))
.  Vx

(0 = 1 dTy(x) _ 1

2 =

To(x)* dx  To*L
Tor — Toi

+ x
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dFp(x)
falx) = —=0
1 dm 1
500 = G T TR
— 1 X
mp —m;

Com os potenciais independentes calculados, foi possivel calcular o
namero de Mach ao longo do eixo x e posteriormente, através de etapas

iterativas, calcular as fungcbes e temperaturas para o escoamento conforme
os graficos abaixo:

Numero de Mach pela posicao x

‘—NUmero de Mach‘

251

Numero de Mach
P

05

x(m)

Figura 5-11 Numero de Mach ao longo do escoamento
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=——Temperatura absoluta
900 | b
800 | b
700 | b
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500 b

400 - b

x(m)
Figura 5-12 Temperaturas estéaticas ao longo do escoamento

105 Presséo pela posicao x
25 T T T

- Pressao de estagnacao
- Pressao Estatica

i~ M ,

Press&o(Pa)

x(m)

Figura 5-13 Press@es estéaticas ao longo do escoamento
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5.3.4 Analise de Resultados

Neste estudo multiplos efeitos atuaram simultaneamente sobre o problema
e a abordagem proposta neste trabalho tornando possivel a obtencdo de
resultados coerentes com o esperado para diferentes situacoes.

Como observado, no primeiro trecho aonde 0 < x < 1m, ndo ha variacao
de area do duto e a variacdo no numero de Mach € mais sutil. A partir deste
trecho o nimero de Mach aumenta significativamente com a nova geometria
do duto. Por fim, quando x = 1,5m, a onda de choque incorre em mudancas
significativas nas caracteristicas do escoamento e ao final o nimero de Mach
€ pequeno o suficiente para a temperatura e pressao estaticas convergirem

para seus pares de estagnacao.

5.4 AVALIACAO DO MODELO

O modelo de escoamento quase unidimensional € substancialmente mais
simples do que técnicas mais recentes de simulacdo numérica de fluidos,
ignorando efeitos de turbuléncia mais complexos. Este modelo, entretanto,
possibilita de maneira clara, a analise de diferentes efeitos que ocorrem
simultineamente no escoamento, atingindo resultados semelhantes aos

principais livros-texto do tema.
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6. CONCLUSOES

Em cursos de graduacéao, o estudo de escoamentos levando em conta
efeitos da compressibilidade muitas vezes nao recebe a devida importancia,
ou entdo é apresentado de maneira introdutdrioa. Em geral, sdo apresentados
efeitos isolados atuando sobre uma secéo de escoamento, sejam eles efeitos
de atrito, troca de calor, variagdo de area, entre outros. Esta metodologia
dificulta uma visao global do estudante sobre interacdo entre estes efeitos e
relacbes de dominancia entre eles sobre as principais propriedades do
sistema. Alguns efeitos tipicos do sistema compressivel, como ondas de
choque, podem ser apresentados de maneira mais tangivel a partir da
vizualicdo de gréficos de pressao e temperatura, por exemplo, ao longo de um
bocal.

Nos exemplos resolvidos ao longo deste trabalho, o equacionamento
desenvolvido com base em autores classicos (Shapiro, 1954; Zucrow, 1976 e
Hodge, 1995), se mostra robusto o suficiente e, com sucesso, simula
complexos escoamentos unidimensionais a partir de condicfes iniciais e
potenciais-chave do escoamento conhecidos.

Ainda que a deducdo do modelo compressivel unidimensional possa
fugir do escopo de um curso de graduacao, este modelo pode ser facilmente
implementado no formato de um programa em linguagem de simulacdo
simples, uma vez que sua simulacéo se alicerca em rotinas numeéricas com
métodos integrativos relativamente simples. A simulacao, por parte de alunos
e professores, de um escoamento através de diferentes geometrias, utilizando
condi¢cBes de entrada diferentes se mais pratica e visual, tornando possivel a
ilustracdo de problemas resolvidos em sala de aula, em linha com
metodologias de ensino mais recentes, com maior enfoque pratico. O efeito
de blocagem, por exemplo, pode ser facilmente ilustrado por um sistema
simples com um bocal convergente. No ultimo exemplo resolvido, da secao
5.3, € evidente a relacdo de dominancia da variacdo de area do bocal em

relacdo a ocorréncia de atrito sobre o escoamento. Esta conclusado é evidente
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a partir da selecado de uma geometria com diametro inicalmente constante que
passa a divergir.

Conforme mencionado ao longo do trabalho, o modelo apresenta
limitac6es sendo necesséria a introdugcéo da posicédo da onda de choque no
bocal e de um maior detalhamento sobre a troca de calor como condi¢édo de
contorno, por exemplo. Para casos complexos da industria aeroespacial e
bélica, por exemplo, no qual o estudo de escoamentos compressiveis ganha
importancia softwares de CFD conseguem resolver problemas com maior
complexidade. Historicamente, entretanto, este modelo teve aplicacdes com
bons resultados na década de 80 na simulacdo de vedacdes de filmes de

gases pela NASA, conforme ilustrado no trabalho de Zuk (1974).
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